### Isobaric Vapor-Liquid Equilibria and Excess Quantities for Binary Mixtures of an Ethyl Ester + *tert*-Butanol and a New Approach to VLE Data Processing

### Juan Ortega,\* Fernando Espiau, and Miguel Postigo<sup>†</sup>

Laboratorio de Termodinámica y Fisicoquímica, Escuela Superior de Ingenieros Industriales, Universidad de Las Palmas de Gran Canaria, 35071-Las Palmas de Gran Canaria, Islas Canarias, Spain

This paper presents the experimental excess properties  $H_{\rm m}^{\rm E}$  and  $V_{\rm m}^{\rm E}$  obtained at different temperatures and the vapor-liquid equilibrium values at 101.32 kPa for four binary mixtures composed of four ethyl esters (methanoate to butanoate) and *tert*-butyl alcohol. A point-to-point test applied to the equilibrium values indicated that the systems studied were consistent. The binary mixture ethyl ethanoate + *tert*butyl alcohol exhibits an azeotropic point at  $x_{az} = 0.832$  and T = 349.59 K. All values were correlated using a new equation with temperature-dependent coefficients fitting simultaneously the vapor-liquid equilibria and  $H_{\rm m}^{\rm E}$  values. Good fits were obtained in all cases. Application of a modified version of the UNIFAC model to the mixtures containing a tertiary alkanol yielded rather poor estimates.

### Introduction

In the framework of our team's ongoing research program on thermodynamic properties of systems of an alkyl ester + an alkanol and as a part of a systematic study, this paper presents the experimental values and modeling for isobaric vapor-liquid equilibria (VLE) at 101.32 kPa for four binary systems composed of one of the ethyl esters (methanoate to butanoate) and 2-methylpropan-2-ol (tertbutyl alcohol). A literature search failed to disclose any VLE values for these binary mixtures except some azeotropic points for the system comprising ethyl ethanoate + tert-butyl alcohol.<sup>1</sup> As part of this same study, the molar volumes and excess enthalpies were also determined at two different temperatures. These values were useful for supplementary processing of the VLE values and analyzing the behavior of the mixtures considered. In this connection, Nikam et al.<sup>2</sup> published  $V_{\rm m}^{\rm E}$  values for the system ethyl ethanoate + tert-butyl alcohol at several temperatures, and they will be included for purposes of comparison.

Processing of the experimental values was performed using a new form of an equation employed previously.<sup>3</sup> In an endeavor to assess the efficacy of this new version of the equation, a genetic algorithm<sup>4</sup> was used to fit the VLE and  $H_{\rm m}^{\rm E}$  values simultaneously. Last, the suitability of the modified-UNIFAC<sup>5</sup> group contribution model in estimating the mixing properties for the mixtures of an ethyl ester with the tertiary alkanol was assessed.

This study, containing the information of a set of experimental values for four binary systems of an ethyl ester + *tert*-butyl alcohol, was intended as a further contribution to other papers dealing with alkyl esters and other isomers of butanol published previously,<sup>6–8</sup> providing new values for addition to the literature and at the same time using those values in a method intended to improve processing of the quantities characterizing the phase equilibria of binary systems.

\* Corresponding author. E-mail: jortega@dip.ulpgc.es.

#### **Experimental Section**

Materials. Ethyl esters and tert-butyl alcohol employed in the work were of the highest purity commercial grade from Fluka. All them were degassed ultrasonically and dried on a molecular sieve (0.3 nm from Fluka) before use. Component quality was verified by a gas chromatograph (Hewlett-Packard 6890) equipped with a flame ionization detector (FID), and the degree of purity obtained (Table 1) was in all cases consistent with the manufacturer's specifications. The quality was also tested by measuring such physical properties as the normal boiling point  $T_{b,i}^{0}$ , the density  $\rho$ , and the refractive index  $n_{\rm D}$ , which were used for purposes of comparison. The tert-butyl alcohol has a melting temperature<sup>9</sup> of 298.81 K. The measured values for the above-mentioned physical properties have also been summarized in Table 1; on the whole, good agreement with the literature values was observed.

*Apparatus and Procedure.* The experimental equipment used to determine the isobaric VLE operated dynamically, with refluxing of both phases. System pressure was monitored by a model PPC2 pressure controller/calibrator from Desgranges et Huot, with an uncertainty of  $\pm 0.02$  kPa. The temperature attained at each equilibrium stage was measured using a model ASL-F25 thermometer, calibrated periodically in accordance with the ITS-90, and had a measurement uncertainty of  $\pm 10$  mK. The concentrations were calculated from the density curves as obtained using an Anton-Paar (DMA-55) densimeter with an uncertainty of  $\pm 0.02$  kg·m<sup>-3</sup>.

Concentration values for the binary systems consisting of an ethyl ester (1) + *tert*-butyl alcohol (2) at isobaric equilibrium were determined using a standard density versus concentration curve,  $\rho = \rho(x_1)$  obtained at temperatures of 303.15 and 318.15 K for each system using samples of known composition, and applying a polynomial equation of second or third degree. The  $\rho$  versus  $x_1$ relationships for each mixture were validated by corroborating the quality of the results for  $V_m^E$  versus  $x_1$ ; the uncertainty for the  $V_m^E$  was  $\pm 2 \times 10^{-9}$  m<sup>3</sup>·mol<sup>-1</sup>. Accord-

<sup>&</sup>lt;sup>†</sup> Present address: Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina.

Table 1. Physical Properties of Pure Substances, tert-Butanol and Ethyl Esters, Obtained Experimentally

|                      |               | $T_{\rm b,}^0/{ m K}$ |                                            | ρ (298.15           | K)∕kg•m <sup>−3</sup>                      | <i>n</i> <sub>D</sub> (303.15 K) |                     |
|----------------------|---------------|-----------------------|--------------------------------------------|---------------------|--------------------------------------------|----------------------------------|---------------------|
| compound             | mass fraction | expt                  | lit                                        | expt                | lit                                        | expt                             | lit                 |
| <i>tert</i> -butanol | 0.997         | 355.58                | $355.57^a$<br>$355.50^b$                   | 775.37 <sup>a</sup> | 775.7 <sup>a</sup>                         | 1.3820                           |                     |
| ethyl methanoate     | 0.98          | 327.29                | 327.46 <sup>b, c</sup>                     | 914.53              | 915.3 <sup>b</sup><br>914.9 <sup>c</sup>   | 1.3550                           |                     |
| ethyl ethanoate      | >0.99         | 350.25                | 350.26 <sup>b</sup><br>350.21 <sup>c</sup> | 894.44              | 894.55 <sup>b</sup><br>894.52 <sup>c</sup> | 1.3675                           | $1.3675^{d}$        |
| ethyl propanoate     | >0.99         | 371.91                | 372.25 <sup>b,c</sup>                      | 883.95              | 884.0 <sup>b</sup><br>884.42 <sup>c</sup>  | 1.3791                           | 1.3790 <sup>d</sup> |
| ethyl butanoate      | >0.98         | 394.17                | 394.70 <sup>b</sup><br>394.65 <sup>c</sup> | 873.94              | 873.94 <sup>b</sup><br>874.11 <sup>c</sup> | 1.3880                           |                     |

<sup>a</sup> At 303.15 K, Wilhoit et al. (ref 9). <sup>b</sup> Riddick et al. (ref 10). <sup>c</sup> Daubert and Danner (ref 11). <sup>d</sup> Ortega and Matos (ref 12).

ingly, the back-calculation of the concentrations for the mixtures at equilibrium, after measurement of the densities of the condensed vapor phase and the liquid phase, yielded estimates with a precision better than  $\pm 0.002$  ester mole fraction units.

The excess enthalpies,  $H_m^E$ , were determined isothermically at temperatures of 299.15 and 318.15 K, with an uncertainty of  $\pm 0.01$  K, using a Calvet model MS80D calorimeter routinely calibrated electrically by a Joule effect. The uncertainties in the experimental results were estimated to be less than 1% of the  $H_m^E$  values.

### **Results and Discussion**

**Excess Properties.** Table 2 shows the excess molar volumes for the ethyl ester + *tert*-butyl alcohol binary systems at known ester concentration determined at 303.15 and 318.15 K. For each binary mixture, the value pairs  $(x_1, V_m^E)$  were correlated using a modified version of an equation employed previously,<sup>3</sup> of the form

$$Y_{\rm m}^{\rm E} = z_1 z_2 \sum_{i=0}^{m} A_i z_1^{\ i} \tag{1}$$

where

$$z_i = \frac{x_1}{x_1 + kx_2}$$

with  $Y_{\rm m}^{\rm E}$  being a generic excess property and where for the volumes, *k* was set equal to  $k_{\rm v} = V_2^{\theta}/V_1^{\theta}$ , with  $V_i^{\theta}$  being the molar volume of the pure components of the mixture measured at the working temperature; see Ortega and Alcalde.<sup>13</sup> Table 4 presents the estimated  $A_i$  coefficients for eq 1 obtained using a least-squares procedure along with the standard deviation values,  $s(V_m^E)$ , for each mixture. The results of the correlations have been plotted together with the experimental points for the four systems considered at the working temperature of 303.15 K in Figure 1. The corresponding inset figure depicts the changes in the equimolar  $V_{\rm m}^{\rm E}$  values with ester chain length and temperature, yielding the positive quantity  $(\partial V_{\rm m}^{\rm E}/\partial T)_{p,x} > 0$ . There was good agreement between our values and those for the system composed of ethyl ethanoate + tert-butyl alcohol published by Nikam et al.<sup>2</sup> at  $x_1 > 0.5$ , but some discrepancies were observed at lower concentrations.

Enthalpies for the four systems were measured at two temperatures, 299.15 K (to avoid the solidification of *tert*-butyl alcohol) and 318.15 K, and the values are presented in Table 3. In this case, the regression of the value pairs ( $x_1$ ,  $H_{\rm m}^{\rm E}/RT$ ) using the same procedure mentioned above to optimize eq 1 yielded values of k, now designated  $k_{\rm h}$ , by



**Figure 1.** Experimental values (•) and correlation curves for  $V_m^E$  vs  $x_1$  at 303.15 K for the binary mixtures  $C_{u-1}H_{2u-1}COOC_2H_5$  (1) + CH<sub>3</sub>(CH<sub>3</sub>)C(OH)CH<sub>3</sub> (2); labels indicate the *u* values.  $\Box$ , Values from Nikam et al. (ref 2); the inset figure shows the changes in equimolar volumes at different values of *u* and at two temperatures, 303.15 K (•) and 318.15 K ( $\bigcirc$ ).

iteration with a view to achieving the best fit. Table 4 lists the coefficients obtained for the correlations and the corresponding standard deviations,  $s(H_m^E)$ . Figure 2 shows the experimental points and the fitted curves for the enthalpies of the four systems at 299.15 K. The corresponding inset figure depicts the changes in the equimolar excess enthalpies with temperature and ester chain length. The quantity  $(\partial H_m^E/\partial T)_{p,x}$  is negative in this case.

The behavior of mixtures of esters + isobutanol was thoroughly analyzed earlier.<sup>6,14</sup> However, results for other mixtures of a tertiary alkanol and esters are needed for a more in-depth consideration of such systems, including comparisons of the results obtained according to ester chain length and alkanol type.

**Vapor Pressures.** Vapor pressures influence the values of the VLE quantities, and for that reason our studies ordinarily present experimental measurements for the  $(T, p_i^0)$  pairs on the saturation curves for the components employed, obtained using the same experimental equipment used for the VLE values. In this study, the vapor pressures for the four ethyl esters had already been measured at our laboratory.<sup>3,14</sup> Accordingly, vapor pressure

Table 2. Excess Volumes,  $V_m^E$ , for Binary Systems of Ethyl Esters (1) + *tert*-Butanol (2) at Two Different Temperatures

#### $10^{9} V_{\rm m}^{\rm E}$ $10^9 V_{\rm m}^{\rm E}$ $10^9 V_{\rm m}^{\rm E}$ m<sup>3</sup>·mol<sup>-1</sup> m<sup>3</sup>·mol<sup>-1</sup> m<sup>3</sup>⋅mol<sup>-1</sup> $X_1$ *X*1 $X_1$ T = 303.15 KEthyl Methanoate (1) + tert-Butanol (2) 0.0451 165 0.3957 860 0.5954 835 0.0901 335 0.4411 873 0.6467 794 0.1537 506 0.6956 742 0.4445 875 0.1973 607 0.4964 879 0.7432 659 0.2481 702 0.5013 880 0.8016 554 878 0.2631 732 0.5084 0.8477 463 790 0.5344 870 0.9067 0.3042 328 0.3255 810 0.5515 864 0.9465 217 0.3448 830 0.5677 858 Ethyl Et hanoate (1) + tert-Butanol (2) 0.0458 755 706 114 0.51780.63360.0972 265 0.5274 754 0.6501 687 0.1702 443 0.5449 751 0.7084 624 529 0.1982499 0.5624 748 0.7732 0.2483 578 0.5722 742 0.8111 460 0.2718 612 0.5885 735 0.8533 372 0.8915 0.3074 660 0.5998 730 284 0.3613 708 0.6022 727 0.9686 86 0.3973 730 0.6086 720 752 0.4626 0.6124 717 Ethyl Propanoate (1) + tert-Butanol (2) 0.0345 600 76 0.4486 0.6458 645 0.0905 212 0.7044 0.4998 648 545 0.1495 331 0.5006 653 0.7533 487 402 652 0.8103 404 0.1943 0.5163 0.2497 482 0.5188 651 0.8580 325 0.2987 539 0.5569 647 0.9096 224 577 642 154 0.3496 0.5646 0.9432 0.3997 619 0.5964 631 0.4466 639 0.6368 607 + tert-Butanol (2) Ethyl Butanoate (1) 0.0445 92 0.4468 609 0.7129 483 0.0966 208 0.4837 611 0.7538 433 377 0.1518 311 0.5015 611 0.79340.1999 383 0.5259 607 0.8465 299 0.2466 441 0.5538 599 0.9017 200 574 0.3111 513 0.6004 0.9614 82 0.3504 560 0.6399 550 0.4043 591 0.6630 523 T = 318.15 KEthyl Methanoate (1) + tert-Butanol (2)0.1022 **40**9 0.4934 919 0.6390 821 0.1289 486 0.5055 920 0.6902 760 0.7388 682 0.2320 707 0.5111 919 0.2909 796 0.5267 913 0.7922 579 0.3356 841 0.5360 909 0.8429 471 0.8913 0.4076 897 0.5637 891 345 0.4696 917 0.5859 875 0.9414 204 Ethyl Ethanoate (1) + tert-Butanol (2) 0.0796 596 237 0.4344 786 0.7670 0.1377 370 0.4633 793 0.8516 418 0.1899 483 0.5377 795 0.8891 361 0.2558 614 0.5626 787 0.9294 237 0.2985 684 0.6284 755 0.3703 744 700 0.6913 Ethyl Pr opanoate (1) + tert-Butanol (2) 0.0694 543 185 0.3648 616 0.7319 0.8088 0.1223 299 0.4303 643 445 0.1759 387 0.4669 650 0.8557 375 0.2144 451 0.5429 653 0.9183 228 0.2746 529 0.5960 643 0.3188 579 0.6662 605 Ethyl Butanoate (1) + tert-Butanol (2) 603 0.0604 183 0.4477 644 0.6597 0.1099 285 0.4595 650 0.7011 573 0.1559 363 0.4778 653 0.7450 515 0.2141 445 0.4982 655 0.7968 450 0.2650 517 0.4996 0.8396 381 656 0.2982 0.5163 656 0.8701 541 315 0.3386 574 0.5222 655 0.9283 201 0.3900 614 0.5936 638

## Table 3. Excess Enthalpies $H_{m}^{E}$ , for Binary Systems of Ethyl Esters (1) + *tert*-Butanol (2) at Two Different Temperatures

| _          |                     |             |                         |            |                     |
|------------|---------------------|-------------|-------------------------|------------|---------------------|
|            | $H_{\rm m}^{\rm E}$ |             | $H_{\rm m}^{\rm E}$     |            | $H_{ m m}^{ m E}$   |
| <i>X</i> 1 | J·mol <sup>-1</sup> | <i>X</i> 1  | J·mol <sup>-1</sup>     | <i>X</i> 1 | J·mol <sup>-1</sup> |
|            | 0 11101             | T = 90      | 0 15 17                 |            | 0 11101             |
|            | Ethyl M             | I = 28      | (9.13  K)               | itanol (2) |                     |
| 0.0680     | 587.0               | 0 4738      | $1) + le_1 - Dl 2166 3$ | 0.7701     | 1606 6              |
| 0.0003     | 1064 7              | 0.4738      | 2163.9                  | 0.8357     | 1258 5              |
| 0.1401     | 1481 9              | 0.5696      | 2155.9                  | 0.8964     | 892.8               |
| 0.22140    | 1797.6              | 0.5050      | 2139.6                  | 0.0304     | 453 1               |
| 0.3549     | 1999.3              | 0.6322      | 2044 0                  | 0.0400     | 455.1               |
| 0.4172     | 2115.9              | 0.6996      | 1868.8                  |            |                     |
| 0.1172     | Ethyl E             | thanoate (1 | ) + tert-Bu             | tanol (2)  |                     |
| 0.0546     | 376.1               | 0.4207      | 1862.1                  | 0.6800     | 1727.0              |
| 0.1163     | 746.3               | 0.4707      | 1921.1                  | 0.7438     | 1525.6              |
| 0.1810     | 1100.4              | 0.5157      | 1939.5                  | 0.8091     | 1250.1              |
| 0.2456     | 1390.7              | 0.5541      | 1932.4                  | 0.8769     | 887.2               |
| 0.3079     | 1610.9              | 0.5640      | 1925.7                  | 0.9385     | 489.2               |
| 0.3672     | 1767.4              | 0.6199      | 1855.8                  |            |                     |
|            | Ethyl Pı            | opanoate (  | I) + tert-Bu            | ıtanol (2) |                     |
| 0.0555     | 335.2               | 0.4164      | 1744.1                  | 0.7300     | 1481.7              |
| 0.1332     | 766.9               | 0.4497      | 1789.5                  | 0.8294     | 1076.0              |
| 0.2151     | 1134.8              | 0.4770      | 1808.5                  | 0.9242     | 551.1               |
| 0.2979     | 1449.1              | 0.5513      | 1799.3                  |            |                     |
| 0.3767     | 1662.9              | 0.6351      | 1722.9                  |            |                     |
|            | Ethyl B             | utanoate (1 | ) + tert-Bu             | tanol (2)  |                     |
| 0.0438     | 251.8               | 0.3568      | 1549.4                  | 0.6746     | 1596.1              |
| 0.0937     | 515.6               | 0.4053      | 1642.5                  | 0.7522     | 1386.3              |
| 0.1461     | 778.9               | 0.4331      | 1696.6                  | 0.8330     | 1050.1              |
| 0.1991     | 1040.6              | 0.4818      | 1741.8                  | 0.9172     | 598.9               |
| 0.2541     | 1237.4              | 0.5387      | 1751.9                  |            |                     |
| 0.3061     | 1411.9              | 0.6024      | 1711.3                  |            |                     |
|            |                     | T = 31      | 8.15 K                  |            |                     |
|            | Ethyl M             | ethanoate ( | 1) + tert-Bu            | ıtanol (2) |                     |
| 0.0612     | 520.5               | 0.4911      | 2048.0                  | 0.7860     | 1546.7              |
| 0.1263     | 916.3               | 0.5110      | 2051.6                  | 0.8292     | 1348.0              |
| 0.2016     | 1365.3              | 0.5304      | 2048.5                  | 0.8754     | 1092.0              |
| 0.2725     | 1675.1              | 0.5696      | 2026.6                  | 0.9191     | 805.4               |
| 0.3389     | 1854.9              | 0.6207      | 1986.9                  | 0.9757     | 305.0               |
| 0.3986     | 1972.3              | 0.6806      | 1878.3                  |            |                     |
| 0.4509     | 2030.7              | 0.7292      | 1744.0                  |            |                     |
|            | Ethyl E             | thanoate (1 | ) + tert-Bu             | tanol (2)  |                     |
| 0.0538     | 334.2               | 0.3987      | 1764.9                  | 0.6844     | 1663.3              |
| 0.1146     | 687.7               | 0.4461      | 1833.7                  | 0.7436     | 1470.8              |
| 0.1733     | 1004.7              | 0.4878      | 1862.5                  | 0.8108     | 1194.0              |
| 0.2313     | 1285.3              | 0.5176      | 1873.0                  | 0.8797     | 828.2               |
| 0.2953     | 1510.4              | 0.5676      | 1857.5                  | 0.9442     | 433.3               |
| 0.3487     | 1658.2              | 0.6236      | 1793.9                  |            |                     |
|            | Ethyl Pı            | ropanoate ( | 1) + <i>tert</i> -Bu    | itanol (2) |                     |
| 0.0510     | 292.6               | 0.4028      | 1654.3                  | 0.6499     | 1665.9              |
| 0.1094     | 585.3               | 0.4347      | 1714.8                  | 0.7164     | 1506.7              |
| 0.1681     | 875.1               | 0.4528      | 1738.2                  | 0.7897     | 1255.3              |
| 0.2276     | 1132.5              | 0.4786      | 1773.9                  | 0.8641     | 908.4               |
| 0.2892     | 1371.5              | 0.5297      | 1780.1                  | 0.9381     | 479.0               |
| 0.3477     | 1536.8              | 0.5872      | 1752.5                  | 1.0        |                     |
| 0.0004     | Ethyl B             | utanoate (1 | ) + tert-Bu             | tanol (2)  | 17140               |
| 0.0394     | 293.3               | 0.3850      | 15/4.8                  | 0.5934     | 1/14.0              |
| 0.0951     | 577.3               | 0.4267      | 1638.2                  | 0.6595     | 1619.5              |
| 0.1580     | 850.7               | 0.4576      | 1690.5                  | 0.7407     | 1405.9              |
| 0.2201     | 1088.2              | 0.4628      | 1694.3                  | 0.8336     | 1040.4              |
| 0.2807     | 1310.1              | 0.4938      | 1723.2                  | 0.9223     | 569.7               |
| 0.3377     | 1460.0              | 0.5386      | 1738.2                  |            |                     |

versus temperature measurements were only made for *tert*butyl alcohol in this case. The direct experimental values are given in Table 5, while Table 6 presents the constants in the Antoine equation,

$$\log(p_i^0/kPa) = A - B/[(T/K) - C]$$
(2)

obtained by a least-squares method. Table 6 compares the experimental values for *A*, *B*, and *C* for *tert*-butyl alcohol with the literature values. The values used for the ethyl esters in this study also appear in the table. Figure 3 plots

# Table 4. Coefficients and Standard Deviation, s, Obtained Using Equation 1 to Correlate the Excess Properties, $V_{\rm m}^{\rm E}$ and $H_{\rm m}^{\rm E}/RT$

| $Y_{\rm m}^{\rm E} = 10^9 V_{\rm m}^{\rm E}$ in (m <sup>3</sup> ·mol <sup>-1</sup> ) |                       |                        |         |         |                             |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------|------------------------|---------|---------|-----------------------------|--|--|--|--|
| binary mixture of                                                                    |                       |                        |         |         | $10^9 s(V_{\rm m}^{\rm E})$ |  |  |  |  |
| <i>tert</i> -butanol $(2)$ +                                                         | <i>k</i> <sub>v</sub> | $A_0$                  | $A_1$   | $A_2$   | m³∙mol <sup>−1</sup>        |  |  |  |  |
|                                                                                      | T=                    | = 303.15               | K       |         |                             |  |  |  |  |
| +ethyl methanoate (1)                                                                | 1.43                  | 4 5796                 | -6988   | 4200    | 6                           |  |  |  |  |
| +ethyl ethanoate (1)                                                                 | 1.04                  | 7 3264                 | -444    |         | 6                           |  |  |  |  |
| +ethyl propanoate (1)                                                                | 1.55                  | 5 3893                 | -3548   | 1478    | 4                           |  |  |  |  |
| +ethyl butanoate (1)                                                                 | 0.53                  | 2 1235                 | 1077    | 1757    | 5                           |  |  |  |  |
|                                                                                      | T=                    | = 318.15               | К       |         |                             |  |  |  |  |
| +ethyl methanoate (1)                                                                | 0.60                  | 3 3123                 | -1011   | 3614    | 5                           |  |  |  |  |
| +ethyl ethanoate (1)                                                                 | 1.59                  | 7 5050                 | -5424   | 2856    | 8                           |  |  |  |  |
| +ethyl propanoate (1)                                                                | 1.18                  | 6 3378                 | -2461   | 1900    | 5                           |  |  |  |  |
| +ethyl butanoate (1)                                                                 | 0.63                  | 4 2212                 | -1334   | 3629    | 5                           |  |  |  |  |
|                                                                                      | $Y_{\rm m}^{\rm E}$   | $=H_{\rm m}^{\rm E}/R$ | Т       |         |                             |  |  |  |  |
| hinom mintune of                                                                     |                       |                        |         |         | $10^3 s(H_{\rm m}^{\rm E})$ |  |  |  |  |
| <i>tert</i> -butanol (2) +                                                           | $k_{ m h}$            | $A_0^1$                | $A_1^1$ | $A_2^1$ | J·mol <sup>-1</sup>         |  |  |  |  |
|                                                                                      | <i>T</i> =            | = 299.15               | K       |         |                             |  |  |  |  |
| +ethyl methanoate (1)                                                                | 1.047                 | 9598.6                 | -3204.1 | 2849.0  | 7.6                         |  |  |  |  |
| +ethyl ethanoate (1)                                                                 | 1.546                 | 11080.1                | -8830.9 | 3326.1  | 3.9                         |  |  |  |  |
| +ethyl propanoate (1)                                                                | 0.864                 | 5408.2                 | 3533.5  | 5.9     | 8.3                         |  |  |  |  |
| +ethyl butanoate (1)                                                                 | 0.948                 | 5700.3                 | 2539.3  | 1.6     | 8.6                         |  |  |  |  |
| 5                                                                                    | T=                    | = 318.15               | к       |         |                             |  |  |  |  |
| +ethyl methanoate (1)                                                                | 1.447                 | 12667.8                | -1437.4 | 10257.3 | 13.8                        |  |  |  |  |
| +ethyl ethanoate (1)                                                                 | 0.885                 | 5921.1                 | 3018.9  | 3.8     | 9.3                         |  |  |  |  |
| +ethyl propanoate (1)                                                                | 0.872                 | 5019.3                 | 3952.1  | -1.7    | 11.0                        |  |  |  |  |
| +ethyl butanoate (1)                                                                 | 0.591                 | 4603.0                 | -2036.6 | 10288.1 | 11.3                        |  |  |  |  |
| 5                                                                                    |                       |                        |         |         |                             |  |  |  |  |



**Figure 2.** Experimental values (•) and correlation curves for  $H_m^{\rm E}$  vs  $x_1$  at 299.15 K for the binary mixtures  $C_{u-1}H_{2u-1}COOC_2H_5$  (1) + CH<sub>3</sub>(CH<sub>3</sub>)C(OH)CH<sub>3</sub> (2); labels indicate the *u* values; the inset figure shows the changes in equimolar enthalpies for different values of *u* and at two temperatures, 303.15 K (•) and 318.15 K ( $\bigcirc$ ).

the vapor pressure curves for the components, that is, the ethyl esters and the *tert*-butyl alcohol, on reduced coordinates employing an equation similar to eq 2 to correlate the nondimensional temperatures and vapor pressures (see Ortega et al.<sup>16</sup>), representing the constants in lower case (*a*, *b*, and *c*). These values can be related quite readily to the values in eq 2 and have also been presented in Table 6 together with the acentric factors  $\omega$ , as defined by Pitzer,

| Table 5.  | Experimental | Vapor | Pressures, | $p_i^{o}$ , for |
|-----------|--------------|-------|------------|-----------------|
| tert-Buta | nol          |       |            | -               |

| ieri-Dula | 1101        |        |             |        |             |
|-----------|-------------|--------|-------------|--------|-------------|
| ТK        | $p_i^0/kPa$ | ТK     | $p_i^0/kPa$ | ТK     | $p_i^0/kPa$ |
| 332.30    | 37.40       | 348.90 | 77.42       | 359.27 | 117.00      |
| 333.03    | 38.69       | 349.34 | 78.76       | 359.84 | 119.53      |
| 333.45    | 39.34       | 349.74 | 80.07       | 360.13 | 120.87      |
| 334.60    | 41.37       | 350.10 | 81.30       | 360.46 | 122.36      |
| 335.29    | 42.93       | 350.53 | 82.71       | 360.64 | 123.08      |
| 335.87    | 43.85       | 350.90 | 83.96       | 360.97 | 124.73      |
| 336.43    | 45.01       | 351.33 | 85.66       | 361.26 | 126.15      |
| 337.17    | 46.69       | 351.67 | 86.64       | 361.47 | 126.96      |
| 337.80    | 48.06       | 352.05 | 88.15       | 361.73 | 128.20      |
| 338.37    | 49.27       | 352.45 | 89.39       | 362.02 | 129.63      |
| 338.86    | 50.27       | 352.80 | 90.67       | 362.54 | 132.15      |
| 339.50    | 51.81       | 353.13 | 92.07       | 362.75 | 133.36      |
| 340.08    | 53.17       | 353.50 | 93.39       | 363.03 | 134.71      |
| 340.59    | 54.25       | 353.81 | 94.63       | 363.08 | 134.81      |
| 341.17    | 55.83       | 354.18 | 95.95       | 363.56 | 137.40      |
| 341.63    | 56.78       | 354.51 | 97.04       | 363.82 | 138.80      |
| 342.18    | 58.37       | 354.85 | 98.36       | 364.09 | 140.03      |
| 342.68    | 59.61       | 355.23 | 100.07      | 364.33 | 141.29      |
| 343.13    | 60.61       | 355.50 | 100.88      | 364.66 | 142.96      |
| 343.70    | 62.30       | 355.58 | 101.32      | 365.09 | 145.34      |
| 344.13    | 63.27       | 355.83 | 102.22      | 365.27 | 146.36      |
| 344.68    | 64.99       | 356.22 | 103.92      | 365.62 | 148.18      |
| 345.06    | 65.81       | 356.52 | 105.27      | 366.10 | 150.66      |
| 345.49    | 67.05       | 356.86 | 106.62      | 366.51 | 153.08      |
| 346.11    | 69.05       | 357.15 | 107.71      | 366.81 | 154.69      |
| 346.51    | 70.21       | 357.45 | 109.12      | 367.08 | 156.16      |
| 346.83    | 71.11       | 357.77 | 110.47      | 367.49 | 158.58      |
| 347.28    | 72.45       | 358.06 | 111.51      | 367.83 | 160.39      |
| 347.68    | 73.43       | 358.35 | 112.83      | 368.23 | 162.82      |
| 348.20    | 75.35       | 358.68 | 114.36      |        |             |
| 348.54    | 76.17       | 358.96 | 115.48      |        |             |
|           |             |        |             |        |             |



**Figure 3.** Vapor pressure curves plotted on reduced coordinates for the ethyl esters  $C_{u-1}H_{2u-1}COOC_2H_5$  and *tert*-butyl alcohol calculated using the coefficient values set out in Table 6 and the experimental (•) and literature (ref 21) ( $\triangle$ ,  $\Box$ ) azeotropic points; labels indicate the *u* values; the inset figure shows the same azeotropic points as a function of ester concentration.

calculated for each of the components, which were used in the subsequent characterization of the VLE values. There was acceptable agreement between the  $\omega$  values obtained and the literature values.

### **Table 6. Coefficients of the Antoine Equation**

Coefficients A, B, and C of the Antoine Equation<sup>a</sup> Used in This Work with Expression of Temperature Range

| compound                                                                   | Α                                                                            | В                                        | С                                | $s(p_i^0)^c/kPa$ | Δ <i>T</i> /K                            | references                                                                                                 |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------|----------------------------------|------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|
| <i>tert</i> -butanol                                                       | 6.600 44<br>6.356 48<br>6.328 30                                             | 1238.69<br>1107.06<br>1092.97            | 85.99<br>101.05<br>102.65        | 0.09             | 330 - 370<br>330 - 365                   | this work<br>Riddick et al. (ref 10)<br>Boublik et al. (ref 15)                                            |
| ethyl methanoate<br>ethyl ethanoate<br>ethyl propanoate<br>ethyl butanoate | $\begin{array}{c} 6.650\ 74\\ 6.596\ 55\\ 6.301\ 80\\ 6.363\ 64 \end{array}$ | 1431.31<br>1480.71<br>1382.89<br>1496.03 | 19.09<br>27.61<br>50.09<br>50.90 |                  | 300-350<br>300-370<br>340-390<br>370-410 | Soto et al. (ref 3)<br>Hernández et al. (ref 14)<br>Hernández et al. (ref 14)<br>Hernández et al. (ref 14) |

Coefficients *a*, *b*, and *c* of the Antoine Equation in Reduced Form, <sup>*b*</sup> Calculated from Experimental Vapor Pressures, and the Acentric Factor for Each of the Compounds

| compound             | а        | b        | С     | ω      | references                  |
|----------------------|----------|----------|-------|--------|-----------------------------|
| <i>tert</i> -butanol | 2.998 37 | 2.443 89 | 0.170 | 0.6136 | $calculated^b$              |
|                      |          |          |       | 0.6158 | Daubert and Danner (ref 11) |
| ethyl methanoate     | 2.953 55 | 2.789 68 | 0.040 | 0.2732 | $calculated^b$              |
| -                    |          |          |       | 0.2849 | Daubert and Danner (ref 11) |
| ethyl ethanoate      | 3.019 07 | 2.836 59 | 0.052 | 0.3584 | calculated <sup>b</sup>     |
| -                    |          |          |       | 0.3611 | Daubert and Danner (ref 11) |
| ethyl propanoate     | 2.758 52 | 2.513 25 | 0.093 | 0.3819 | calculated <sup>b</sup>     |
|                      |          |          |       | 0.3944 | Daubert and Danner (ref 11) |
| ethyl butanoate      | 2.842 11 | 2.577 48 | 0.094 | 0.4111 | $calculated^b$              |
|                      |          |          |       | 0.4190 | Daubert and Danner (ref 11) |

 $a^{a}\log(p_{i}^{0}/k\text{Pa}) = A - B/(T/(K) - C)$ .  $b\log(p_{i,r}^{0}) = a - b/(T_{r} - c)$ . <sup>c</sup> Standard deviation, *s*, between the experimental values and the corresponding fitting curve.

**Presentation of VLE Values.** The  $T-x_1-y_1$  values were determined on reaching the equilibrium states between the liquid and vapor phases at the working pressure of  $p = (101.32 \pm 0.02)$  kPa for the four binary mixtures, represented empirically as  $H_{2u-1}C_{u-1}COOC_2H_5$  (u = 1 to 4) (1) + CH<sub>3</sub>(CH<sub>3</sub>)C(OH)CH<sub>3</sub> (2). Considering that the vapor phase was not ideal, the activity coefficients for the components in the liquid phase were calculated by

$$\ln \gamma_{i} = \ln \left( \frac{py_{i}}{p_{i}^{0}x_{i}} \right) + \frac{(B_{ii} - V_{i}^{0})(p - p_{i}^{0})}{RT} + \frac{p}{RT} \sum_{k} \sum_{k} y_{j}y_{k}(2\delta_{ji} - \delta_{jk})$$
(3)

where

$$\delta_{ii} = 2B_{ii} - B_{ii} - B_{ii}$$

where the second virial coefficients,  $B_{ij}$ , for the pure components and for the mixtures were calculated using the correlations proposed by Tsonopoulos.<sup>17</sup> The molar volume,  $B_{ij}$ , for pure component *i* at each equilibrium temperature was calculated using the Rackett equation as modified by Spencer and Danner<sup>18</sup> with the  $Z_{RA}$  coefficients as published by Reid et al.<sup>19</sup> The activity coefficients obtained using eq 3 were used to calculate the values for the nondimensional Gibbs function  $G_{\rm m}^{\rm E}/RT$ , and the results for each of the binary systems appear in Table 7. The version of the point-to-point consistency test proposed by Fredenslund et al.<sup>20</sup> was applied to the results, and for the vapor phase the discrepancies between the experimental mole fractions and the values calculated by the model were assessed for each equilibrium state. The experimental values in Table 7 satisfied the condition  $\bar{\delta} = \sum_{i} (y_{i, exp} - z_{i})$  $y_{i,cal}$ / $N \le 0.01$ . Figure 4 plots *T* versus  $x_1, y_1$  for the four systems of an ethyl ester (1) + tert-butyl alcohol (2). As already mentioned in the Introduction, the literature does not contain VLE values for the systems considered here that can be used for comparison. Setting  $(y_1 - x_1) = 0$  and



**Figure 4.** Representation of experimental VLE values (**●**) and correlation curves for T vs  $x_1$ ,  $y_1$  for the binary mixtures  $C_{u-1}H_{2u-1}$ -COOC<sub>2</sub>H<sub>5</sub> (1) + CH<sub>3</sub>(CH<sub>3</sub>)C(OH)CH<sub>3</sub> (2); labels indicate the u values. Dashed lines indicate curves estimated using the UNIFAC model (ref 5).

 $(d T/dx)_p = 0$ , the azeotropic point observed for the system composed of x ethyl ethanoate + (1 - x) tert-butyl alcohol was calculated to occur at  $x_{az} = 0.832$  and  $T_{az} = 349.59$  K. Figure 3 shows the azeotropic point found in this study along with published values<sup>1,21</sup> for this same binary system under other experimental conditions. The plot has been performed on reduced coordinates, taking the geometric mean for the critical quantities of the pure substances as the mixing rule for calculating the pseudocritical quantities. While the plot of the  $p_{i,r}^0$  versus  $1/T_r$  values yielded a good correlation with the azeotropic line, the inset figure reveals a sizable discrepancy in the azeotrope concentration. Future work may provide clarification of this finding.

Table 7. Experimental Data,  $T-x_1-y_1$ , and Calculated Quantities for the VLE of the Binary Mixtures of Ethyl Alkanoate (1) + *tert*-Butanol (2) at 101.32 kPa

| $ \begin{array}{c} \mbox{Tr} 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>T</i> /K | <i>X</i> 1 | $y_1$  | $\gamma_1$ | $\gamma_2$ | $G_{\rm m}^{\rm E}/RT$ | <i>T</i> /K | <i>X</i> 1 | $y_1$     | $\gamma_1$ | $\gamma_2$ | $G_{\rm m}^{\rm E}/RT$ | <i>T</i> /K | <i>X</i> 1 | $y_1$  | $\gamma_1$ | $\gamma_2$ | $G_{\rm m}^{\rm E}/RT$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|--------|------------|------------|------------------------|-------------|------------|-----------|------------|------------|------------------------|-------------|------------|--------|------------|------------|------------------------|
| $ \begin{array}{c} 334.13 & 0.0197 & 0.0712 & 1.006 & 1.001 & 0.010 & 342.4 & 0.243 & 0.5452 & 1.391 & 1.012 & 0.089 & 333.85 & 0.6684 & 0.8395 & 1.083 & 1.285 & 0.137 \\ 351.69 & 0.0559 & 0.1837 & 1.562 & 1.003 & 0.027 & 340.71 & 0.288 & 0.5664 & 1.348 & 1.026 & 0.165 & 331.45 & 0.6664 & 0.8395 & 1.083 & 1.285 & 0.137 \\ 359.03 & 0.0694 & 0.2210 & 1.542 & 0.098 & 0.040 & 339.95 & 0.3116 & 0.6164 & 1.322 & 1.034 & 0.113 & 325.60 & 0.8995 & 0.8482 & 1.048 & 1.388 & 0.110 \\ 349.21 & 0.0898 & 0.2961 & 1.525 & 0.998 & 0.040 & 339.95 & 0.314 & 0.127 & 1.075 & 0.852 & 0.8025 & 0.9444 & 1.043 & 1.478 & 0.079 \\ 347.77 & 0.1245 & 0.333 & 1.505 & 1.000 & 0.060 & 335.65 & 0.341 & 0.144 & 0.118 & 322.82 & 0.824 & 0.497 & 1.487 & 0.079 \\ 345.80 & 0.113 & 0.426 & 0.422 & 1.052 & 1.005 & 0.356 & 0.7414 & 0.718 & 1.225 & 1.07 & 0.141 & 327.74 & 0.584 & 0.973 & 1.005 & 1.664 & 0.027 \\ 344.40 & 0.136 & 0.422 & 1.425 & 1.005 & 0.073 & 334.69 & 0.7391 & 1.126 & 1.130 & 0.143 & 327.74 & 0.584 & 0.973 & 1.000 & 1.662 & 0.063 \\ 344.00 & 0.136 & 0.522 & 1.467 & 1.069 & 0.047 & 334.49 & 0.336 & 0.7770 & 1.170 & 1.130 & 0.144 \\ 35.16 & 0.0236 & 0.5224 & 1.071 & 1.096 & 0.047 & 334.59 & 0.3386 & 0.7770 & 1.160 & 1.163 & 0.145 \\ \hline \\ \hline \\ 55.18 & 0.0234 & 0.0558 & 1.313 & 1.002 & 0.003 & 352.27 & 0.2390 & 0.386 & 1.211 & 1.018 & 0.054 & 350.14 & 0.5619 & 0.6104 & 1.087 & 1.096 & 0.874 \\ 35.42 & 0.044 & 0.057 & 1.313 & 1.002 & 0.003 & 352.27 & 0.2390 & 0.3381 & 1.057 & 1.138 & 1.048 & 0.774 & 0.4868 & 0.774 & 1.143 & 0.084 \\ 34.42 & 0.041 & 0.167 & 1.228 & 1.002 & 0.023 & 351.48 & 0.0380 & 0.371 & 1.138 & 1.044 & 0.057 & 344.81 & 0.6629 & 0.613 & 1.474 & 0.714 \\ 35.42 & 0.047 & 0.137 & 0.072 & 34.48 & 0.062 & 0.338 & 0.411 & 1.074 & 0.073 & 34.68 & 0.774 & 0.718 & 1.274 & 0.054 \\ 35.43 & 0.0464 & 0.124 & 1.040 & 0.023 & 351.68 & 0.3390 & 0.431 & 1.177 & 0.705 & 34.84 & 0.068 & 0.8724 & 0.716 & 1.142 & 0.064 \\ 35.44 & 0.0468 & 0.2424 & 1.041 & 0.052 & 0.5351 & 1.071 & 1.075 & 0.874 & 0.788 & 80.301 & 0.775 & 0.974 & 0.788 & 80.774 & 0.788 & 80.610 & 0.778$ |             |            |        |            |            |                        | Ethy        | yl Metha   | noate (1) | + tert     | Butano     | l (2)                  |             |            |        |            |            |                        |
| 352.79       0.0380       0.1361       1.584       1.004       0.022       341.62       0.2687       1.546       1.003       0.277       0.2825       0.0779       0.8825       1.071       0.310       0.330       0.0130       0.329       0.389       0.310       0.300       0.310       0.300       0.310       0.300       0.310       0.300       0.3114       0.7149       0.8255       0.0779       0.8842       1.048       1.038       0.013       0.3116       0.6194       1.031       1.040       0.07579       0.8842       1.041       1.538       0.014       1.314       1.040       0.07579       0.8842       1.042       1.464       0.073       3.011       0.3102       0.0769       0.314       0.7144       1.228       1.087       0.163       0.226       0.9411       1.011       1.538       0.041         34.63       0.1240       1.427       1.446       1.003       0.083       3.547       0.555       1.177       1.143       0.141       327.44       0.9808       0.9933       1.000       1.662       0.067       3.547       0.568       0.339       1.041       1.051       1.618       0.447       1.446       1.037       1.641       1.27       0.779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 354.13      | 0.0197     | 0.0712 | 1.606      | 1.001      | 0.010                  | 342.41      | 0.2433     | 0.5452    | 1.391      | 1.012      | 0.089                  | 333.05      | 0.5994     | 0.8066 | 1.114      | 1.220      | 0.144                  |
| $ \begin{array}{c} 351.6 0 \ 0.0550 \ 0.1837 \ 1.562 \ 1.003 \ 0.027 \ 340.7 \ 0.288 \ 0.5944 \ 1.348 \ 1.026 \ 0.150 \ 331.6 \ 0.0841 \ 0.084 \ 0.388 \ 0.130 \ 339.5 \ 0.316 \ 0.6194 \ 0.328 \ 0.384 \ 0.131 \ 339.5 \ 0.370 \ 0.6761 \ 0.322 \ 1.034 \ 0.118 \ 329.8 \ 0.310 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 0.330 \ 5.0 \ 5.0 \ 0.330 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 $                           | 352.79      | 0.0380     | 0.1306 | 1.584      | 1.004      | 0.022                  | 341.62      | 0.2637     | 0.5679    | 1.368      | 1.021      | 0.098                  | 331.85      | 0.6664     | 0.8393 | 1.083      | 1.285      | 0.137                  |
| 350.93       0.0694       0.2210       1.546       1.000       0.030       339.02       0.309       0.2409       0.6406       1.322       1.011       320.82       0.044       1.341       1.416       0.095         348.40       0.1136       0.3301       1.516       0.997       0.044       1.341       1.238       0.0464       0.241       1.242       1.047       1.143       1.228       1.087       0.142       1.442       1.041       1.538       0.041       1.341       0.373       0.340       0.252       0.9216       0.9411       1.010       1.568       0.444       1.041       1.538       0.143       3.141       0.7143       1.228       1.087       1.045       1.040       1.051       1.040       1.043       3.274       0.568       0.941       1.041       1.538       0.100       1.043       1.044       1.023       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041       1.041 <td>351.69</td> <td>0.0559</td> <td>0.1837</td> <td>1.562</td> <td>1.003</td> <td>0.027</td> <td>340.71</td> <td>0.2889</td> <td>0.5964</td> <td>1.348</td> <td>1.026</td> <td>0.105</td> <td>331.45</td> <td>0.6941</td> <td>0.8525</td> <td>1.070</td> <td>1.310</td> <td>0.130</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 351.69      | 0.0559     | 0.1837 | 1.562      | 1.003      | 0.027                  | 340.71      | 0.2889     | 0.5964    | 1.348      | 1.026      | 0.105                  | 331.45      | 0.6941     | 0.8525 | 1.070      | 1.310      | 0.130                  |
| $\begin{array}{c} 349.2 & 0.0980 & 0.2961 & 1.52 & 0.998 & 0.040 & 330.2 & 0.3409 & 0.6460 & 1.302 & 1.044 & 0.118 & 329.3 & 0.802 & 0.9044 & 1.034 & 1.416 & 0.095 \\ 347.77 & 0.1245 & 0.350 & 1.505 & 1.000 & 0.051 & 337.30 & 0.025 & 0.6939 & 1.247 & 1.072 & 0.131 & 328.2 & 0.896 & 0.9844 & 0.9246 & 0.9246 & 0.9241 & 0.101 & 1.588 & 0.044 \\ 345.8 & 0.172 & 0.4427 & 1.464 & 1.003 & 0.068 & 338.5 & 0.4590 & 0.7318 & 1.228 & 1.087 & 0.138 & 328.2 & 0.9216 & 0.6611 & 1.01 & 1.588 & 0.044 \\ 345.8 & 0.172 & 0.4427 & 1.464 & 1.003 & 0.068 & 338.5 & 0.4590 & 0.7318 & 1.278 & 1.107 & 0.143 & 327.44 & 0.9868 & 0.9933 & 1.000 & 1.664 & 0.207 \\ 344.40 & 0.184 & 0.4262 & 1.452 & 1.006 & 0.077 & 33.5.0 & 1.0990 & 0.7553 & 1.178 & 1.130 & 0.143 & 327.44 & 0.9868 & 0.9933 & 1.000 & 1.662 & 0.006 \\ 344.0 & 0.2037 & 0.4907 & 1.425 & 1.006 & 0.077 & 33.5.0 & 1.0990 & 0.7553 & 1.150 & 1.163 & 0.143 & 327.44 & 0.9868 & 0.9933 & 1.000 & 1.662 & 0.006 \\ 343.0 & 0.258 & 0.5224 & 1.027 & 1.009 & 0.084 & 33.41 & 0.593 & 34.941 & 0.561 & 9.6104 & 1.087 & 1.096 & 0.87 \\ 355.18 & 0.0234 & 0.0588 & 1.310 & 1.001 & 0.010 & 352.27 & 0.2368 & 0.3066 & 1.211 & 1.018 & 0.053 & 349.81 & 0.6629 & 0.6913 & 1.054 & 1.143 & 0.080 \\ 354.7 & 0.0666 & 0.1012 & 1.289 & 1.002 & 0.013 & 352.27 & 0.2883 & 0.3871 & 1.193 & 1.024 & 0.067 & 34.980 & 0.6478 & 1.068 & 1.120 & 0.087 \\ 353.41 & 0.047 & 0.1367 & 1.275 & 1.004 & 0.027 & 351.84 & 0.3363 & 0.491 & 1.172 & 1.032 & 0.076 & 34.980 & 0.8102 & 0.8129 & 1.027 & 1.214 & 0.055 \\ 353.84 & 0.137 & 0.169 & 0.328 & 0.1338 & 0.4091 & 1.172 & 1.032 & 0.076 & 34.950 & 0.848 & 0.8415 & 1.061 & 1.270 & 0.051 \\ 353.41 & 0.167 & 0.198 & 1.237 & 0.108 & 351.36 & 0.3281 & 1.104 & 1.068 & 0.3645 & 1.091 & 1.076 & 0.088 \\ 353.41 & 0.167 & 0.108 & 0.351 & 0.052 & 5.351 & 1.101 & 1.161 & 0.108 & 363.60 & 0.7285 & 0.5811 & 1.043 & 1.163 & 0.065 \\ 353.40 & 0.0458 & 0.0271 & 1.231 & 1.012 & 0.049 & 350.40 & 0.573 & 0.361 & 0.073 & 36.10 & 0.773 & 0.8910 & 0.721 & 1.014 & 1.056 & 36.049 & 0.087 & 35.360 & 0.778 & 0.871 & 0.071 & 35.60 & 0.07$              | 350.93      | 0.0694     | 0.2210 | 1.546      | 1.000      | 0.030                  | 339.95      | 0.3116     | 0.6194    | 1.328      | 1.033      | 0.110                  | 330.50      | 0.7579     | 0.8842 | 1.048      | 1.358      | 0.110                  |
| 348.40       0.1136       0.391       1.66       0.997       0.044       338.18       0.3704       0.6702       1.276       1.025       0.124       322.3       0.8464       0.0246       1.023       1.178       0.079         346.30       0.1528       0.4907       1.485       1.000       0.663       353.50       0.4925       1.464       1.005       1.668       0.444         344.80       0.1426       1.462       1.005       1.668       0.444       1.468       1.005       1.668       0.444         343.10       0.2256       0.5224       1.007       1.033       1.178       1.130       0.143       327.78       0.5844       0.9733       1.000       1.666       0.006         353.01       0.2256       0.5224       1.007       1.009       0.877       1.151       1.163       0.144       350.14       0.6104       1.087       1.096       0.607         354.00       0.0447       0.6071       1.299       1.002       0.013       352.77       0.2130       1.224       1.021       0.6673       349.60       0.6473       1.648       1.430       0.648         354.0       0.0447       0.6671       1.299       1.002 <t< td=""><td>349.21</td><td>0.0989</td><td>0.2961</td><td>1.525</td><td>0.998</td><td>0.040</td><td>339.02</td><td>0.3409</td><td>0.6460</td><td>1.302</td><td>1.044</td><td>0.118</td><td>329.85</td><td>0.8025</td><td>0.9044</td><td>1.034</td><td>1.416</td><td>0.095</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 349.21      | 0.0989     | 0.2961 | 1.525      | 0.998      | 0.040                  | 339.02      | 0.3409     | 0.6460    | 1.302      | 1.044      | 0.118                  | 329.85      | 0.8025     | 0.9044 | 1.034      | 1.416      | 0.095                  |
| 347.7       0.1245       0.131       328.20       0.981       0.9443       1.014       1.338       0.0081         346.30       0.152       0.4927       1.464       1.000       0.068       338.57       0.4599       0.7318       1.225       1.107       0.143       327.44       0.9844       0.9773       1.005       1.664       0.027         344.48       0.143       0.422       1.225       1.007       0.143       327.44       0.9864       0.9773       1.005       1.664       0.007         341.40       0.2258       0.5224       1.407       1.009       0.843       334.10       0.2268       0.524       1.001       1.562       0.2034       0.358       1.313       1.002       0.009       352.77       0.2139       0.2834       1.223       1.014       0.054       350.14       0.5619       0.6104       1.087       1.006       0.097         355.16       0.0234       0.058       1.313       1.206       1.1018       0.054       361.0       0.561       1.017       1.014       1.048       0.086         354.0       0.142       1.29       1.002       0.103       352.77       0.2189       0.3333       1.04171       1.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 348.40      | 0.1136     | 0.3303 | 1.516      | 0.997      | 0.044                  | 338.18      | 0.3704     | 0.6702    | 1.276      | 1.055      | 0.124                  | 329.23      | 0.8464     | 0.9246 | 1.023      | 1.478      | 0.079                  |
| 346.30       0.1528       0.4097       1.485       1.000       0.666       335.87       0.4590       7.181       1.205       1.07       0.141       327.44       0.9540       0.9731       1.000       1.662       0.006         344.80       0.1262       0.4267       1.452       1.000       0.6755       1.178       1.130       0.141       327.44       0.9868       0.9933       1.000       1.662       0.006         344.40       0.2258       0.5224       1.407       1.009       0.044       34.19       0.5396       0.7710       1.150       1.138       0.144         353.16       0.0224       0.0358       1.011       1.0101       0.010       352.27       0.2369       0.368       1.211       1.018       0.593       4.997       0.6989       0.6478       1.087       1.000       0.643         354.0       0.0447       0.0667       1.257       1.004       0.027       351.84       0.2389       0.339       1.44       1.027       0.074       340.68       0.779       1.027       1.14       0.058       3.538       0.128       1.225       1.007       0.352       0.775       1.021       1.004       1.035       0.491       1.011 <t< td=""><td>347.77</td><td>0.1245</td><td>0.3530</td><td>1.505</td><td>1.000</td><td>0.051</td><td>337.30</td><td>0.4025</td><td>0.6939</td><td>1.249</td><td>1.072</td><td>0.131</td><td>328.66</td><td>0.8880</td><td>0.9443</td><td>1.014</td><td>1.538</td><td>0.061</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 347.77      | 0.1245     | 0.3530 | 1.505      | 1.000      | 0.051                  | 337.30      | 0.4025     | 0.6939    | 1.249      | 1.072      | 0.131                  | 328.66      | 0.8880     | 0.9443 | 1.014      | 1.538      | 0.061                  |
| 343.8       0.1720       0.4427       1.464       1.003       0.068       335.87       0.4390       0.7515       1.178       1.103       0.143       327.78       0.9963       0.9933       1.000       1.662       0.006         344.40       0.143       0.425       1.000       0.0490       0.755       1.178       1.130       0.143       327.78       0.9963       0.9933       1.000       1.662       0.006         341.0       0.2258       0.5224       1.007       0.039       325.77       0.5396       0.7710       1.130       1.614       0.045       35.18       0.0384       0.5619       0.6104       1.087       1.096       0.087         355.18       0.0344       0.0584       1.311       1.001       0.010       352.52       0.2380       0.3861       1.201       0.063       349.97       0.6629       0.6104       1.087       1.430       0.082         354.57       0.0686       0.112       1.259       1.002       0.023       351.46       0.3633       0.3821       1.184       1.027       0.073       346.60       0.6120       8.122       1.021       1.214       0.053       33.10       1.313       0.227       1.221       1.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 346.30      | 0.1528     | 0.4097 | 1.485      | 1.000      | 0.060                  | 336.55      | 0.4314     | 0.7143    | 1.228      | 1.087      | 0.136                  | 328.20      | 0.9216     | 0.9611 | 1.010      | 1.568      | 0.044                  |
| 344.00       0.1643       0.1642       1.000       1.0490       0.735       1.170       1.138       0.144         344.00       0.2258       0.5224       1.007       0.334.79       0.5095       0.7711       1.150       1.148       0.144         343.10       0.2258       0.5224       1.407       1.009       0.004       344.19       0.5395       0.711       1.150       0.143       0.614       1.087       1.006       0.007         355.16       0.0334       0.0581       1.313       1.002       0.009       352.77       0.2139       0.2386       1.211       1.168       0.059       349.97       0.6098       0.6144       1.087       1.096       0.087         354.6       0.0447       0.0671       1.299       1.002       0.013       352.27       0.2399       0.3339       1.204       1.021       0.063       349.81       0.6629       0.6913       1.054       1.143       0.083         354.2       0.0447       0.1367       1.275       1.040       0.052       3.534       0.614       0.681       0.629       0.6913       1.054       1.140       0.653         353.4       0.1648       0.5281       0.3033       0.6261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 345.38      | 0.1720     | 0.4427 | 1.464      | 1.003      | 0.068                  | 335.87      | 0.4599     | 0.7318    | 1.205      | 1.107      | 0.141                  | 327.78      | 0.9544     | 0.9773 | 1.005      | 1.604      | 0.027                  |
| 344.94       0.2037       0.4907       1.423       1.000       0.077       334.79       0.5396       0.777       1.150       1.163       0.144         343.10       0.2286       0.5224       1.027       1.000       0.007       332.77       0.130       1.163       0.145         Ethyl Ethamaette(1) + tert-Butanol (2)         355.06       0.0334       0.0508       1.310       1.001       0.010       352.57       0.2380       0.3281       1.212       1.018       0.059       349.97       0.6098       0.6478       1.068       1.143       0.080         354.50       0.0486       0.1012       1.289       1.002       0.033       352.27       0.2590       0.3331       1.012       0.007       349.81       0.6629       0.9131       1.174       1.174       1.138       1.142       0.063       349.81       0.6612       0.8012       0.211       1.11       0.112       1.008       0.86       0.8102       0.8174       0.183       0.141       1.145       0.080       0.8174       0.318       0.3339       0.141       1.145       0.081       0.8129       1.214       0.063         333.41       0.157       0.817       0.217       0.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 344.80      | 0.1843     | 0.4626 | 1.452      | 1.005      | 0.073                  | 335.01      | 0.4990     | 0.7555    | 1.170      | 1.130      | 0.143                  | 327.44      | 0.9868     | 0.9933 | 1.000      | 1.662      | 0.006                  |
| $ \begin{array}{c} 533.10 & 0.2258 & 0.524 & 1.40' & 1.09' & 0.09' & 1.34' & 1.00' & 1.09' & 0.09' & 1.34' & 0.539 & 0.770' & 1.130' & 1.168' & 0.133' \\                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 344.04      | 0.2037     | 0.4907 | 1.425      | 1.006      | 0.077                  | 334.79      | 0.5095     | 0.7611    | 1.170      | 1.138      | 0.144                  |             |            |        |            |            |                        |
| Ethyl Ethanoate (1) + tert-Butanol (2)           S55.18         0.003         355.18         0.013         357.02         357.07         0.110         0.013         357.02         0.013         357.02         0.013         357.02         0.013         357.02         0.013         357.02         0.013         357.02         0.013         357.02         0.013         357.02         0.027         357.01         0.027         357.01         0.027         357.01         0.077         349.63         0.8129         0.771         1.214         0.072         357.01         0.073         349.59         0.8129         0.212         1.214         0.072         357.01         0.073         349.59         0.8428         0.8428         0.8428         0.8428         0.8428         0.8428         0.851         1.214         0.001         357.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 343.10      | 0.2238     | 0.3224 | 1.407      | 1.009      | 0.084                  | 334.19      | 0.5396     | 0.7770    | 1.150      | 1.103      | 0.145                  |             |            |        |            |            |                        |
| 333.18       0.023       1.313       1.002       0.009       332.17       0.2139       0.2834       1.223       1.014       0.034       330.97       0.0508       0.211       1.018       0.0547       0.0663       349.81       0.0628       0.6478       1.068       1.024       0.063       349.81       0.6628       0.6478       1.068       1.121       0.084         354.57       0.0568       0.111       2.295       1.003       0.020       352.05       0.2823       0.557       1.184       1.024       0.063       349.81       0.7679       0.7759       1.027       1.214       0.055         353.85       0.1235       0.142       2.591       1.005       0.032       351.60       0.3391       0.4701       1.145       1.047       0.0878       349.59       0.8428       0.8415       1.016       1.270       0.051         353.40       0.1668       0.2281       1.221       1.010       0.042       355.08       0.4771       0.5384       1.114       1.069       0.8428       0.8415       1.016       1.270       0.051         353.40       0.668       0.2281       1.221       1.010       0.044       350.41       0.557       0.571       0.771 <td>955 10</td> <td>0.0004</td> <td>0.0250</td> <td>1 9 1 9</td> <td>1 009</td> <td>0.000</td> <td>Eth</td> <td>yl Ethai</td> <td>10ate (1)</td> <td>+ tert-</td> <td>Butanol</td> <td>(2)</td> <td>950 14</td> <td>0 5010</td> <td>0.0104</td> <td>1 007</td> <td>1 000</td> <td>0.007</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 955 10      | 0.0004     | 0.0250 | 1 9 1 9    | 1 009      | 0.000                  | Eth         | yl Ethai   | 10ate (1) | + tert-    | Butanol    | (2)                    | 950 14      | 0 5010     | 0.0104 | 1 007      | 1 000      | 0.007                  |
| 335.00       0.033       0.0308       1.310       1.001       0.011       352.2       0.2309       0.3086       1.211       1.103       0.0093       319.97       0.0098       0.0098       1.0098       1.100       1.100       0.013       352.27       0.2590       0.333       1.204       1.021       0.063       319.97       0.0098       0.0217       315.40       0.047       318.41       1.141       1.021       0.063       319.97       0.0778       0.0773       1.024       0.073       319.97       0.0783       340.60       0.7797       0.7759       1.211       0.0053       333.92       0.181       1.141       1.027       0.0773       340.60       0.8102       0.8121       1.141       1.025       0.0773       349.50       0.4242       0.0161       1.141       1.027       0.073       349.50       0.4242       0.016       1.141       0.050       0.773       0.271       1.141       0.068       349.70       0.4848       0.8322       0.071       1.340       0.042       353.04       0.168       0.837       0.141       0.051       0.351       0.071       350.41       0.551       1.017       1.075       0.863       0.4848       0.322       0.0922       0.0051       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333.18      | 0.0234     | 0.0338 | 1.313      | 1.002      | 0.009                  | 332.11      | 0.2139     | 0.2834    | 1.223      | 1.014      | 0.054                  | 330.14      | 0.3019     | 0.0104 | 1.087      | 1.090      | 0.087                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 355.06      | 0.0334     | 0.0508 | 1.310      | 1.001      | 0.010                  | 352.52      | 0.2369     | 0.3086    | 1.211      | 1.018      | 0.059                  | 349.97      | 0.6098     | 0.64/8 | 1.068      | 1.120      | 0.084                  |
| 334.3       0.0080       0.0102       1.228       0.002       0.020       0.220.3       0.321       1.143       1.006       349.63       0.744       0.7416       1.039       1.171       0.074         333.8       0.1235       0.1742       1.255       0.007       331.8       0.181       1.114       1.015       1.027       1.214       0.068         333.8       0.1217       2.250       1.008       0.038       31.66       0.3329       0.4361       1.151       1.047       0.848       0.848       0.8112       1.021       1.021       0.051         333.8       0.1573       0.2161       1.243       1.010       0.042       351.86       0.355       0.355       0.055       1.105       0.085       349.88       0.8322       0.9252       1.001       1.374       0.022         353.08       0.157       0.261       0.218       1.377       0.996       0.004       350.80       1.057       0.085       349.88       0.843       0.9322       0.9252       1.001       1.374       0.022         355.80       0.0261       0.0218       1.377       0.996       0.001       350.40       0.5111       0.381       1.114       1.069       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 354.90      | 0.0447     | 0.06/1 | 1.299      | 1.002      | 0.013                  | 352.27      | 0.2599     | 0.3339    | 1.204      | 1.021      | 0.063                  | 349.81      | 0.6629     | 0.6913 | 1.054      | 1.143      | 0.080                  |
| $\begin{array}{c} 334.2 & 0.0947 & 0.1367 & 1.275 & 1.004 & 0.027 & 331.84 & 0.3063 & 0.3821 & 1.184 & 1.027 & 0.070 & 349.63 & 0.612 & 0.8122 & 0.127 & 1.214 & 0.063 \\ 353.84 & 0.1417 & 0.1969 & 1.250 & 1.008 & 0.032 & 351.60 & 0.330 & 0.4091 & 1.172 & 1.032 & 0.074 & 349.60 & 0.812 & 0.812 & 0.121 & 1.016 & 1.270 & 0.051 \\ 353.41 & 0.1573 & 0.2161 & 1.243 & 1.010 & 0.042 & 351.08 & 0.3901 & 0.4701 & 1.145 & 1.047 & 0.085 & 349.48 & 0.8415 & 1.016 & 1.270 & 0.023 \\ 353.00 & 0.1668 & 0.2281 & 1.242 & 1.010 & 0.044 & 350.81 & 0.4386 & 0.5056 & 1.130 & 1.057 & 0.085 & 349.88 & 0.322 & 0.9252 & 1.001 & 1.374 & 0.022 \\ 353.00 & 0.2602 & 0.2622 & 1.221 & 1.013 & 0.052 & 350.471 & 0.5384 & 1.114 & 1.069 & 0.086 & 363.10 & 0.9778 & 0.974 & 0.998 & 1.424 & 0.066 \\ 352.91 & 0.2009 & 0.2682 & 1.227 & 1.013 & 0.052 & 350.471 & 0.5384 & 1.114 & 1.069 & 0.086 & 363.10 & 0.9778 & 0.571 & 0.374 & 0.998 & 1.424 & 0.065 \\ 355.88 & 0.0458 & 0.0378 & 1.357 & 0.997 & 0.011 & 350.94 & 0.5141 & 0.3871 & 1.097 & 1.086 & 0.087 & 365.38 & 0.5811 & 1.034 & 1.163 & 0.065 \\ 355.88 & 0.0458 & 0.0378 & 1.357 & 0.997 & 0.011 & 350.94 & 0.5141 & 0.3871 & 1.097 & 1.086 & 0.087 & 365.38 & 0.8115 & 0.6790 & 1.019 & 1.197 & 0.054 \\ 356.80 & 0.1485 & 1.377 & 0.996 & 0.013 & 360.01 & 0.5421 & 0.491 & 1.086 & 1.089 & 0.088 & 365.24 & 0.8056 & 0.6711 & 1.019 & 1.197 & 0.049 \\ 366.80 & 0.1485 & 1.277 & 1.007 & 0.051 & 360.49 & 0.5739 & 0.4357 & 1.076 & 1.100 & 0.086 & 365.19 & 0.816 & 0.755 & 1.017 & 1.207 & 0.455 \\ 356.80 & 0.2879 & 0.1786 & 1.247 & 1.013 & 0.069 & 360.97 & 0.6033 & 0.4604 & 1.066 & 1.116 & 0.082 & 367.73 & 0.810 & 0.7921 & 1.008 & 1.260 & 0.377 & 366.9 & 0.800 & 0.755 & 1.017 & 1.216 & 0.037 \\ 356.89 & 0.279 & 0.1786 & 1.427 & 0.13 & 0.069 & 360.97 & 0.6133 & 0.4604 & 1.066 & 1.116 & 0.082 & 367.73 & 0.8810 & 0.755 & 1.017 & 1.216 & 0.037 \\ 357.9 & 0.352 & 0.2710 & 1.270 & 0.043 & 365.97 & 0.5121 & 0.104 & 1.183 & 0.076 & 371.05 & 0.972 & 0.9860 & 0.5739 & 1.018 & 1.380 & 0.565 \\ 356.38 & 0.4655 & 0.3242 & 1.407 & 1.052 & 0.863 & 0.5160 & 0.25$              | 354.57      | 0.0686     | 0.1012 | 1.289      | 1.002      | 0.020                  | 352.05      | 0.2823     | 0.3571    | 1.193      | 1.024      | 0.067                  | 349.68      | 0.7244     | 0.7416 | 1.039      | 1.1//      | 0.072                  |
| 333.88       0.123       0.1742       1.239       0.1742       1.239       0.0742       1.241       0.0321       1.241       0.033       0.0333       0.1031       0.0325       0.3136       0.1325       0.0342       0.8412       0.8412       0.0412       1.121       0.034         353.41       0.1573       0.2161       1.243       1.010       0.044       351.08       0.380       0.166       0.5281       1.010       0.044       350.80       0.380       0.166       0.5281       1.037       0.022       2.001       1.374       0.022         353.80       0.1687       0.2621       1.231       1.012       0.049       350.80       0.471       0.5384       1.114       1.069       0.086       350.10       0.9778       0.9744       0.998       1.424       0.006         355.80       0.0261       0.0218       1.377       0.997       0.011       359.64       0.5411       0.3871       1.097       1.086       0.088       364.11       0.7285       0.5811       1.034       1.163       0.065       355.80       0.784       0.6811       1.010       0.83       359.61       0.786       0.8363       0.101       0.7285       0.5811       1.019       1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 354.21      | 0.0947     | 0.1367 | 1.275      | 1.004      | 0.027                  | 351.84      | 0.3063     | 0.3821    | 1.184      | 1.027      | 0.070                  | 349.63      | 0.7679     | 0.7759 | 1.027      | 1.214      | 0.065                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 353.88      | 0.1235     | 0.1742 | 1.259      | 1.005      | 0.032                  | 351.60      | 0.3339     | 0.4091    | 1.172      | 1.032      | 0.074                  | 349.60      | 0.8102     | 0.8129 | 1.021      | 1.241      | 0.058                  |
| 333.4       0.1673       0.2161       1.243       1.010       0.042       351.08       0.3991       0.4701       1.145       1.047       0.082       349.74       0.8878       0.8878       0.8878       0.1877       0.2321       1.010       0.044       350.81       0.386       0.5055       1.130       1.057       0.085       349.74       0.8878       0.8878       0.9222       1.011       0.042       350.81       0.386       0.5055       1.107       1.075       0.885       350.10       0.9778       0.9744       0.988       1.424       0.006         355.98       0.0261       0.0218       1.377       0.996       0.000       359.73       0.5212       0.3924       1.094       1.086       0.888       363.41       0.7282       0.8264       0.8648       0.878       0.8451       1.091       1.086       0.888       364.11       0.7462       0.6201       1.19       1.195       0.050       355.86       0.4231       1.091       1.086       0.888       365.42       0.8506       0.811       1.019       1.09       1.086       0.883       365.41       0.476       1.017       0.423       1.014       0.383       0.417       1.014       0.386       0.6563       366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 353.61      | 0.1417     | 0.1969 | 1.250      | 1.008      | 0.038                  | 351.36      | 0.3625     | 0.4361    | 1.159      | 1.039      | 0.078                  | 349.59      | 0.8428     | 0.8415 | 1.016      | 1.270      | 0.051                  |
| 333.30       0.1668       0.2281       1.242       1.010       0.044       350.81       0.4386       0.5056       1.1057       0.085       351.00       0.9778       0.9784       0.998       1.424       0.006         352.91       0.2009       0.2682       1.227       1.013       0.052       350.88       1.107       1.075       0.087       361.10       0.9778       0.9744       0.998       1.424       0.066         355.80       0.0261       0.0218       1.377       0.997       0.011       350.41       0.5052       0.5635       1.107       1.075       0.087       363.36       0.7285       0.5811       1.034       1.163       0.065         355.80       0.0261       0.0218       1.537       0.997       0.011       359.73       0.5212       0.3926       1.097       1.086       0.088       364.11       0.762       0.6201       1.019       1.197       0.493         356.80       0.1485       0.1485       0.1481       0.001       350.73       0.5212       0.3926       1.091       1.086       0.088       365.91       0.3816       0.7555       1.017       1.207       0.453         356.63       0.1485       0.1485       0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 353.41      | 0.1573     | 0.2161 | 1.243      | 1.010      | 0.042                  | 351.08      | 0.3991     | 0.4701    | 1.145      | 1.047      | 0.082                  | 349.74      | 0.8878     | 0.8823 | 1.007      | 1.314      | 0.036                  |
| 333.08       0.1857       0.2501       1.221       1.012       0.049       350.58       0.4771       0.5384       1.117       1.065       0.087         352.91       0.2009       0.2682       1.227       1.013       0.052       350.41       0.5635       1.107       1.075       0.087         355.80       0.0218       1.037       0.996       0.005       359.41       0.3635       1.097       1.086       0.088       363.36       0.7285       0.5811       1.034       1.63       0.065         355.96       0.0784       0.0641       1.341       1.001       0.024       359.73       0.5212       0.3926       1.094       1.089       0.088       365.24       0.8056       0.6711       1.019       1.049         356.43       0.147       1.344       1.002       0.033       360.28       0.5539       1.0437       1.066       0.087       365.34       0.816       0.7655       1.017       1.027       0.453         356.63       0.1865       0.1485       1.277       1.007       0.051       360.91       0.6005       4.573       1.066       1.117       0.085       366.79       0.8000       0.7456       1.012       1.216       0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 353.30      | 0.1668     | 0.2281 | 1.242      | 1.010      | 0.044                  | 350.81      | 0.4386     | 0.5056    | 1.130      | 1.057      | 0.085                  | 349.88      | 0.9322     | 0.9252 | 1.001      | 1.374      | 0.022                  |
| 332.91       0.2009       0.2682       1.227       1.013       0.052       350.41       0.5052       0.5635       1.107       1.075       0.087         355.80       0.0261       0.0218       1.377       0.996       0.005       359.27       0.4845       0.3645       1.109       1.076       0.088       363.36       0.7285       0.5811       1.034       1.163       0.065         355.80       0.0784       0.0641       1.341       1.001       0.024       359.73       0.5212       0.3926       1.094       1.086       0.088       365.34       0.815       0.6701       1.019       1.076       0.088       365.34       0.815       0.6701       1.019       1.09       1.091       1.095       0.050       365.38       0.1423       0.1147       1.304       1.002       0.393       360.28       0.5598       0.4239       1.081       1.101       0.086       365.91       0.8316       0.7055       1.017       1.027       0.045         356.89       0.1423       0.118       1.007       0.573       0.6613       1.117       0.082       366.79       0.8900       0.752       1.001       1.024       0.074       361.39       0.6289       0.452       1.056 </td <td>353.08</td> <td>0.1857</td> <td>0.2501</td> <td>1.231</td> <td>1.012</td> <td>0.049</td> <td>350.58</td> <td>0.4771</td> <td>0.5384</td> <td>1.114</td> <td>1.069</td> <td>0.086</td> <td>350.10</td> <td>0.9778</td> <td>0.9744</td> <td>0.998</td> <td>1.424</td> <td>0.006</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 353.08      | 0.1857     | 0.2501 | 1.231      | 1.012      | 0.049                  | 350.58      | 0.4771     | 0.5384    | 1.114      | 1.069      | 0.086                  | 350.10      | 0.9778     | 0.9744 | 0.998      | 1.424      | 0.006                  |
| Ethyl Propanolet (1) + tert-Butanol (2)           355.80         0.0218         0.0218         1.377         0.996         0.005         359.27         0.4845         0.3645         1.109         1.068         0.088         363.10         0.7285         0.5811         1.013         1.163         0.061           355.80         0.0478         0.0611         1.341         1.001         0.024         359.73         0.5212         0.3926         1.094         1.089         0.088         364.11         0.7628         0.6201         1.029         1.101         0.061           356.38         0.1427         1.034         1.000         0.031         360.10         0.5421         0.4911         1.086         1.087         365.24         0.8010         0.7155         1.017         1.027         0.045           356.38         0.1485         1.277         1.007         0.603         360.97         0.6033         0.4604         1.066         1.116         0.085         368.79         0.8010         0.7455         1.012         1.216         0.037           357.37         0.2717         1.210         1.117         0.620         369.91         0.522         0.8940         0.522         0.8940         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 352.91      | 0.2009     | 0.2682 | 1.227      | 1.013      | 0.052                  | 350.41      | 0.5052     | 0.5635    | 1.107      | 1.075      | 0.087                  |             |            |        |            |            |                        |
| 355.80       0.0261       0.0218       1.377       0.996       0.005       359.27       0.4845       0.3845       1.098       1.008       363.36       0.7285       0.5811       1.0.34       1.63       0.061         355.88       0.0458       0.0378       1.337       0.997       0.011       359.64       0.5141       0.3871       1.097       1.086       0.088       364.11       0.7628       0.6200       1.029       1.107       0.040         355.96       0.0744       0.0641       1.341       1.000       0.021       360.01       0.5421       0.4991       1.086       1.086       1.087       365.38       0.8115       0.6705       1.017       1.027       0.045         356.63       0.1485       1.147       1.013       0.060       360.91       0.6005       0.4573       1.066       1.116       0.082       367.73       0.8910       0.7445       1.021       1.021       1.021       1.021       1.021       1.021       1.021       1.021       1.021       1.021       1.021       0.025       357.75       0.3252       0.2217       1.191       1.024       361.96       0.6297       0.5121       1.049       1.188       0.076       371.05       0.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |            |        |            |            |                        | Eth         | yl Propa   | noate (1) | + tert-    | Butano     | l (2)                  |             |            |        |            |            |                        |
| 355.88       0.0458       0.0458       0.0458       0.0458       0.0641       1.337       0.997       0.011       359.64       0.5141       0.3871       0.0271       0.088       366.11       0.7628       0.6201       1.019       1.086       0.088       366.11       0.7628       0.6711       1.019       1.176       0.050         356.49       0.1102       0.0896       1.323       1.000       0.031       360.01       0.5421       0.4991       1.086       0.087       365.24       0.8060       0.7615       1.017       1.027       0.045         356.68       0.1485       0.1477       1.007       0.051       360.49       0.5739       0.4357       1.066       1.116       0.082       366.79       0.8000       0.7456       1.012       1.216       0.031         356.89       0.2791       1.786       1.247       1.013       0.069       360.97       0.6133       0.4604       1.066       1.116       0.082       366.79       0.8000       0.791       1.024       0.031       36.049       0.6597       0.5112       1.049       1.38       0.076       371.05       0.979       0.9552       1.002       1.264       0.014       355.99       0.221       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 355.80      | 0.0261     | 0.0218 | 1.377      | 0.996      | 0.005                  | 359.27      | 0.4845     | 0.3645    | 1.109      | 1.076      | 0.088                  | 363.36      | 0.7285     | 0.5811 | 1.034      | 1.163      | 0.065                  |
| 355.96       0.0784       0.0641       1.341       1.001       0.024       356.12       0.3926       0.088       365.24       0.8050       0.6711       1.019       1.195       0.050         356.19       0.1102       0.0896       1.323       1.000       0.031       360.01       0.5421       0.4091       1.086       1.096       0.087       365.38       0.8115       0.6705       1.017       1.207       0.049         356.38       0.1425       0.1485       1.277       1.007       0.051       360.49       0.5739       0.4357       1.066       1.117       0.086       365.79       0.8600       0.7456       1.012       1.216       0.037         357.31       0.2791       0.1786       1.247       1.013       0.060       360.97       0.6033       0.4604       1.066       1.116       0.082       368.72       0.9220       0.8441       1.008       1.208       0.373       0.522       0.9211       1.008       1.264       0.011       357.30       0.352       0.2717       1.171       1.043       0.628       365.39       1.043       1.449       0.738       0.8600       0.5739       1.002       1.264       0.017       356.48       0.4088       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 355.88      | 0.0458     | 0.0378 | 1.357      | 0.997      | 0.011                  | 359.64      | 0.5141     | 0.3871    | 1.097      | 1.086      | 0.088                  | 364.11      | 0.7628     | 0.6200 | 1.029      | 1.176      | 0.061                  |
| 356.19       0.1102       0.0896       1.323       1.000       0.031       360.01       0.5421       0.4091       1.086       1.096       0.087       365.38       0.8115       0.6790       1.019       1.197       0.049         356.63       0.1423       0.1147       1.304       1.002       0.039       360.28       0.5598       0.4235       1.076       1.106       0.086       366.79       0.8600       0.7456       1.012       1.207       0.045         356.63       0.279       0.1786       1.247       1.013       0.060       360.91       0.6005       0.4573       1.066       1.117       0.082       366.79       0.8600       0.7456       1.012       1.008       1.216       0.037         357.75       0.3259       0.2517       1.195       1.024       0.074       361.96       0.6289       0.4832       1.059       1.184       0.072       388.46       0.4088       0.3082       1.140       1.052       0.844       362.51       0.6885       0.5394       1.043       1.149       0.072       385.46       0.4088       0.3024       1.411       1.069       0.873       366.28       0.512       1.041       1.131       1.081       0.075       1.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 355.96      | 0.0784     | 0.0641 | 1.341      | 1.001      | 0.024                  | 359.73      | 0.5212     | 0.3926    | 1.094      | 1.089      | 0.088                  | 365.24      | 0.8056     | 0.6711 | 1.019      | 1.195      | 0.050                  |
| 356.38       0.1423       0.1147       1.304       1.002       0.039       360.28       0.5598       0.4239       1.081       1.101       0.086       365.91       0.8316       0.7055       1.017       1.207       0.0437         356.63       0.1865       0.1485       1.277       1.007       0.051       360.49       0.5739       0.4357       1.076       1.106       0.085       366.79       0.8600       0.7456       1.012       1.216       0.037         356.89       0.2279       0.1786       1.247       1.013       0.060       360.97       0.6033       0.4604       1.066       1.116       0.082       368.72       0.9220       0.8444       1.009       1.251       0.025         357.75       0.3259       0.2517       1.195       1.024       0.074       361.96       0.6597       0.512       1.049       1.138       0.076       371.05       0.9797       0.9552       1.002       1.280       0.007         358.46       0.4088       0.3424       1.117       1.069       0.87       362.93       0.7081       0.552       1.037       1.156       0.068       1.002       1.280       0.007       355.39       0.0214       1.472       0.996 </td <td>356.19</td> <td>0.1102</td> <td>0.0896</td> <td>1.323</td> <td>1.000</td> <td>0.031</td> <td>360.01</td> <td>0.5421</td> <td>0.4091</td> <td>1.086</td> <td>1.096</td> <td>0.087</td> <td>365.38</td> <td>0.8115</td> <td>0.6790</td> <td>1.019</td> <td>1.197</td> <td>0.049</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 356.19      | 0.1102     | 0.0896 | 1.323      | 1.000      | 0.031                  | 360.01      | 0.5421     | 0.4091    | 1.086      | 1.096      | 0.087                  | 365.38      | 0.8115     | 0.6790 | 1.019      | 1.197      | 0.049                  |
| 356.63       0.1865       0.1485       1.247       1.007       0.051       360.49       0.5739       0.4357       1.016       0.085       366.79       0.8600       0.7456       1.012       1.216       0.037         356.89       0.2279       0.1786       1.247       1.013       0.060       360.91       0.6005       0.4573       1.066       1.117       0.082       366.79       0.8401       0.091       1.008       1.216       0.082       368.72       0.9220       0.8444       1.091       1.251       0.025         357.35       0.3252       0.2710       1.171       1.034       0.078       361.96       0.6597       0.5112       1.049       1.138       0.076       371.05       0.9797       0.9552       1.002       1.280       0.007         358.46       0.4088       0.3082       1.140       1.052       0.087       362.51       0.6885       0.5394       1.043       1.149       0.072       371.05       0.9797       0.9552       1.002       1.280       0.007       355.84       0.4565       0.3424       1.117       1.064       0.2113       1.134       1.081       0.100       379.66       0.8600       0.5739       1.018       1.338       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 356.38      | 0.1423     | 0.1147 | 1.304      | 1.002      | 0.039                  | 360.28      | 0.5598     | 0.4239    | 1.081      | 1.101      | 0.086                  | 365.91      | 0.8316     | 0.7055 | 1.017      | 1.207      | 0.045                  |
| 356.89       0.2279       0.1786       1.247       1.013       0.060       360.91       0.6005       0.4573       1.066       1.117       0.082       367.73       0.8910       0.7921       1.008       1.236       0.031         357.31       0.2791       0.2170       1.220       1.018       0.069       360.97       0.6033       0.4604       1.066       1.116       0.082       368.72       0.9220       0.8444       1.009       1.251       0.025         357.75       0.3525       0.2710       1.171       1.034       0.078       361.96       0.6597       0.5112       1.049       1.118       0.076       371.05       0.9797       0.9522       1.002       1.280       0.007         358.46       0.4088       0.3082       1.117       1.069       0.087       362.93       0.7081       0.5592       1.037       1.156       0.068       0.073       371.05       0.9797       0.952       1.002       1.280       0.007         355.90       0.218       0.0098       1.498       1.000       364.21       0.4661       0.213       1.114       1.010       1.010       380.98       0.8784       0.6022       1.0151       1.3161       0.050      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 356.63      | 0.1865     | 0.1485 | 1.277      | 1.007      | 0.051                  | 360.49      | 0.5739     | 0.4357    | 1.076      | 1.106      | 0.085                  | 366.79      | 0.8600     | 0.7456 | 1.012      | 1.216      | 0.037                  |
| 357.31       0.2170       1.220       1.018       0.069       360.97       0.6033       0.4604       1.066       1.116       0.082       368.72       0.9220       0.8444       1.009       1.251       0.025         357.75       0.3259       0.2517       1.195       1.024       0.074       361.39       0.6289       0.4832       1.059       1.126       0.080       369.94       0.9522       0.8996       1.003       1.264       0.014         357.99       0.3552       0.2710       1.171       1.034       0.078       361.96       0.6597       0.5112       1.049       1.138       0.076       371.05       0.9797       0.9552       1.002       1.280       0.007         358.46       0.4088       0.3082       1.140       1.052       0.087       362.93       0.7081       0.5592       1.037       1.156       0.068       0.007       379.66       0.8600       0.5739       1.018       1.338       0.056         355.90       0.0218       0.0098       1.467       0.996       0.017       366.42       0.553       0.2602       1.098       1.115       0.101       380.98       0.8784       0.6326       1.011       1.370       0.044 <t< td=""><td>356.89</td><td>0.2279</td><td>0.1786</td><td>1.247</td><td>1.013</td><td>0.060</td><td>360.91</td><td>0.6005</td><td>0.4573</td><td>1.066</td><td>1.117</td><td>0.082</td><td>367.73</td><td>0.8910</td><td>0.7921</td><td>1.008</td><td>1.236</td><td>0.031</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 356.89      | 0.2279     | 0.1786 | 1.247      | 1.013      | 0.060                  | 360.91      | 0.6005     | 0.4573    | 1.066      | 1.117      | 0.082                  | 367.73      | 0.8910     | 0.7921 | 1.008      | 1.236      | 0.031                  |
| 357.75       0.3259       0.2517       1.195       1.024       0.074       361.39       0.6289       0.4832       1.059       1.126       0.080       369.94       0.9522       0.8996       1.003       1.264       0.014         357.99       0.3552       0.2710       1.171       1.034       0.078       361.96       0.6597       0.5112       1.049       1.138       0.076       371.05       0.9797       0.9552       1.002       1.280       0.007         358.46       0.4088       0.3082       1.117       1.069       0.087       362.93       0.7081       0.559       1.037       1.156       0.068       0.068       0.073       364.21       0.4661       0.2113       1.134       1.081       0.100       379.66       0.8600       0.5739       1.018       1.38       0.056         356.38       0.0454       0.0204       1.472       0.996       0.017       366.42       0.5503       0.2602       1.098       1.115       0.101       381.96       0.8901       0.6326       1.011       1.370       0.044         356.74       0.0551       0.020       1.467       0.996       0.017       366.42       0.5503       1.0621       1.157       0.101 </td <td>357.31</td> <td>0.2791</td> <td>0.2170</td> <td>1.220</td> <td>1.018</td> <td>0.069</td> <td>360.97</td> <td>0.6033</td> <td>0.4604</td> <td>1.066</td> <td>1.116</td> <td>0.082</td> <td>368.72</td> <td>0.9220</td> <td>0.8444</td> <td>1.009</td> <td>1.251</td> <td>0.025</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 357.31      | 0.2791     | 0.2170 | 1.220      | 1.018      | 0.069                  | 360.97      | 0.6033     | 0.4604    | 1.066      | 1.116      | 0.082                  | 368.72      | 0.9220     | 0.8444 | 1.009      | 1.251      | 0.025                  |
| 357.99       0.3552       0.2710       1.171       1.034       0.078       361.96       0.6597       0.5112       1.049       1.138       0.076       371.05       0.9797       0.9552       1.002       1.280       0.007         358.46       0.4088       0.3082       1.140       1.052       0.084       362.51       0.6885       0.5394       1.043       1.149       0.072       0.775       0.9552       1.002       1.280       0.007         358.94       0.4565       0.3424       1.117       1.069       0.087       362.93       0.7081       0.5592       1.037       1.156       0.068         Ethyl Butamate (1) + tert-Butanol (2)         355.90       0.0218       0.0094       1.472       0.996       0.014       365.28       0.5106       0.2352       1.112       1.010       0.101       380.98       0.8784       0.6082       1.015       1.361       0.050         356.71       0.0690       0.0310       1.455       0.998       0.024       367.45       0.5856       0.2835       1.087       1.131       0.100       382.66       0.9013       0.6579       1.011       1.382       0.042         357.31       0.1040       0.0470 <td>357.75</td> <td>0.3259</td> <td>0.2517</td> <td>1.195</td> <td>1.024</td> <td>0.074</td> <td>361.39</td> <td>0.6289</td> <td>0.4832</td> <td>1.059</td> <td>1.126</td> <td>0.080</td> <td>369.94</td> <td>0.9522</td> <td>0.8996</td> <td>1.003</td> <td>1.264</td> <td>0.014</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 357.75      | 0.3259     | 0.2517 | 1.195      | 1.024      | 0.074                  | 361.39      | 0.6289     | 0.4832    | 1.059      | 1.126      | 0.080                  | 369.94      | 0.9522     | 0.8996 | 1.003      | 1.264      | 0.014                  |
| 358.46       0.4088       0.3082       1.140       1.052       0.084       362.51       0.6885       0.5394       1.043       1.149       0.072         358.94       0.4565       0.3424       1.117       1.069       0.087       362.93       0.7081       0.5592       1.037       1.156       0.068         355.90       0.0218       0.0098       1.498       1.000       0.009       364.21       0.4661       0.2113       1.134       1.081       0.100       379.66       0.8600       0.5739       1.018       1.338       0.056         356.38       0.0454       0.0204       1.472       0.996       0.014       365.28       0.5106       0.2352       1.112       1.101       0.101       380.98       0.8784       0.6082       1.011       1.374       0.044         356.74       0.0555       0.0201       1.467       0.996       0.014       366.42       0.5585       1.087       1.115       0.101       381.96       0.8001       0.626       1.011       1.332       0.042         357.31       0.1040       0.0470       1.433       0.997       0.35       368.42       0.6169       0.3355       1.077       1.147       0.098       383.63 <td>357.99</td> <td>0.3552</td> <td>0.2710</td> <td>1.171</td> <td>1.034</td> <td>0.078</td> <td>361.96</td> <td>0.6597</td> <td>0.5112</td> <td>1.049</td> <td>1.138</td> <td>0.076</td> <td>371.05</td> <td>0.9797</td> <td>0.9552</td> <td>1.002</td> <td>1.280</td> <td>0.007</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 357.99      | 0.3552     | 0.2710 | 1.171      | 1.034      | 0.078                  | 361.96      | 0.6597     | 0.5112    | 1.049      | 1.138      | 0.076                  | 371.05      | 0.9797     | 0.9552 | 1.002      | 1.280      | 0.007                  |
| 358.94       0.4565       0.3424       1.117       1.069       0.087       362.93       0.7081       0.5592       1.037       1.156       0.068         55.90       0.0218       0.0098       1.498       1.000       0.009       364.21       0.4661       0.2113       1.134       1.081       0.100       379.66       0.8600       0.5739       1.018       1.338       0.056         356.38       0.0454       0.0204       1.472       0.996       0.014       365.28       0.5106       0.2352       1.112       1.101       0.101       380.98       0.8784       0.6082       1.015       1.361       0.050         356.54       0.0555       0.0250       1.467       0.996       0.017       366.42       0.5503       0.2602       1.098       1.115       0.101       381.96       0.8901       0.6326       1.011       1.370       0.044         357.31       0.1040       0.0470       1.433       0.997       0.35       368.42       0.6169       0.3055       1.077       1.147       0.098       383.63       0.9105       0.6800       1.011       1.393       0.040         357.49       0.1201       0.0541       1.419       1.001       0.043 <td>358.46</td> <td>0.4088</td> <td>0.3082</td> <td>1.140</td> <td>1.052</td> <td>0.084</td> <td>362.51</td> <td>0.6885</td> <td>0.5394</td> <td>1.043</td> <td>1.149</td> <td>0.072</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 358.46      | 0.4088     | 0.3082 | 1.140      | 1.052      | 0.084                  | 362.51      | 0.6885     | 0.5394    | 1.043      | 1.149      | 0.072                  |             |            |        |            |            |                        |
| Ethyl Butanote (1) + tert-Butanol (2)         355.90       0.0218       0.0098       1.498       1.000       0.009       364.21       0.4661       0.2113       1.134       1.081       0.100       379.66       0.8600       0.5739       1.018       1.338       0.056         356.38       0.0454       0.0204       1.472       0.996       0.014       365.28       0.5106       0.2352       1.112       1.101       0.101       380.98       0.8784       0.6082       1.015       1.361       0.050         356.54       0.055       0.0250       1.467       0.996       0.017       366.42       0.5503       0.2602       1.098       1.115       0.101       381.96       0.8901       0.6326       1.011       1.370       0.044         356.71       0.0690       0.0470       1.433       0.997       0.355       368.42       0.6169       0.3055       1.077       1.147       0.098       383.63       0.9105       0.6600       1.411       1.392       0.040         357.49       0.1201       0.0541       1.419       1.001       0.43       368.91       0.6322       0.3165       1.072       1.157       0.097       384.54       0.9204       0.7585<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 358.94      | 0.4565     | 0.3424 | 1.117      | 1.069      | 0.087                  | 362.93      | 0.7081     | 0.5592    | 1.037      | 1.156      | 0.068                  |             |            |        |            |            |                        |
| 355.90       0.0218       0.0098       1.498       1.000       0.009       364.21       0.4661       0.2113       1.134       1.081       0.100       379.66       0.8600       0.5739       1.018       1.338       0.056         356.38       0.0454       0.0204       1.472       0.996       0.014       365.28       0.5106       0.2352       1.112       1.101       0.101       380.98       0.8784       0.6082       1.015       1.361       0.050         356.54       0.0555       0.0250       1.467       0.996       0.017       366.42       0.5503       2.602       1.098       1.115       0.101       381.96       0.8901       0.6326       1.011       1.382       0.044         357.31       0.1040       0.0470       1.433       0.997       0.035       368.42       0.6169       0.3055       1.077       1.147       0.098       383.63       0.9105       0.6800       1.011       1.338       0.040         357.31       0.1040       0.0470       1.433       0.997       0.052       369.93       0.6619       0.3352       1.077       1.147       0.998       385.74       0.9204       0.758       1.010       1.402       0.036 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Eth</td><td>yl Butaı</td><td>noate (1)</td><td>+ tert-</td><td>Butanol</td><td>(2)</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |            |        |            |            |                        | Eth         | yl Butaı   | noate (1) | + tert-    | Butanol    | (2)                    |             |            |        |            |            |                        |
| 356.38       0.0454       0.0204       1.472       0.996       0.014       365.28       0.5106       0.2352       1.112       1.101       0.101       380.98       0.8784       0.6082       1.015       1.361       0.050         356.54       0.0555       0.0250       1.467       0.996       0.017       366.42       0.5503       0.2602       1.098       1.115       0.101       381.96       0.8901       0.6326       1.011       1.370       0.044         356.71       0.0690       0.0310       1.455       0.998       0.024       367.45       0.5856       0.2835       1.087       1.131       0.100       382.86       0.9013       0.6579       1.011       1.382       0.042         357.49       0.1201       0.0541       1.419       1.001       0.043       368.91       0.6322       0.3165       1.072       1.157       0.097       384.54       0.9204       0.758       1.010       1.402       0.036         358.32       0.1628       0.0735       1.382       1.000       0.52       369.93       0.6619       0.3384       1.059       1.177       0.093       385.74       0.9320       0.7369       1.004       1.423       0.024 <t< td=""><td>355.90</td><td>0.0218</td><td>0.0098</td><td>1.498</td><td>1.000</td><td>0.009</td><td>364.21</td><td>0.4661</td><td>0.2113</td><td>1.134</td><td>1.081</td><td>0.100</td><td>379.66</td><td>0.8600</td><td>0.5739</td><td>1.018</td><td>1.338</td><td>0.056</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 355.90      | 0.0218     | 0.0098 | 1.498      | 1.000      | 0.009                  | 364.21      | 0.4661     | 0.2113    | 1.134      | 1.081      | 0.100                  | 379.66      | 0.8600     | 0.5739 | 1.018      | 1.338      | 0.056                  |
| 356.54       0.0555       0.0250       1.467       0.996       0.017       366.42       0.5503       0.2602       1.098       1.115       0.101       381.96       0.8901       0.6326       1.011       1.370       0.044         356.71       0.0690       0.0310       1.455       0.998       0.024       367.45       0.5856       0.2835       1.087       1.131       0.100       382.86       0.9013       0.6579       1.011       1.382       0.042         357.49       0.1201       0.0541       1.419       1.001       0.043       368.42       0.6169       0.3055       1.077       1.147       0.098       383.63       0.9105       0.6800       1.011       1.393       0.040         357.49       0.1201       0.0541       1.419       1.001       0.043       368.91       0.6322       0.3165       1.077       1.147       0.098       385.74       0.9204       0.758       1.010       1.402       0.036         358.85       0.1983       0.0887       1.344       1.007       0.064       371.03       0.6908       0.3632       1.051       1.194       0.089       386.87       0.9424       0.7685       1.004       1.423       0.029      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 356.38      | 0.0454     | 0.0204 | 1.472      | 0.996      | 0.014                  | 365.28      | 0.5106     | 0.2352    | 1.112      | 1.101      | 0.101                  | 380.98      | 0.8784     | 0.6082 | 1.015      | 1.361      | 0.050                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 356.54      | 0.0555     | 0.0250 | 1.467      | 0.996      | 0.017                  | 366.42      | 0.5503     | 0.2602    | 1.098      | 1.115      | 0.101                  | 381.96      | 0.8901     | 0.6326 | 1.011      | 1.370      | 0.044                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 356.71      | 0.0690     | 0.0310 | 1.455      | 0.998      | 0.024                  | 367.45      | 0.5856     | 0.2835    | 1.087      | 1.131      | 0.100                  | 382.86      | 0.9013     | 0.6579 | 1.011      | 1.382      | 0.042                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 357.31      | 0.1040     | 0.0470 | 1.433      | 0.997      | 0.035                  | 368.42      | 0.6169     | 0.3055    | 1.077      | 1.147      | 0.098                  | 383.63      | 0.9105     | 0.6800 | 1.011      | 1.393      | 0.040                  |
| 358.32       0.1628       0.0735       1.382       1.000       0.052       369.93       0.6619       0.3384       1.059       1.177       0.093       385.74       0.9320       0.7369       1.006       1.416       0.029         358.85       0.1983       0.0887       1.344       1.007       0.064       371.03       0.66098       0.3322       1.051       1.114       0.089       386.87       0.9424       0.7685       1.004       1.423       0.024         359.44       0.2309       0.1032       1.315       1.011       0.072       372.63       0.7311       0.0393       1.038       1.224       0.082       387.84       0.9510       0.7961       1.002       1.432       0.019         360.20       0.2797       0.1231       1.262       1.027       0.84       373.55       0.7514       0.4207       1.032       1.244       0.078       388.93       0.9606       0.8295       1.001       1.443       0.016         361.13       0.3246       0.1431       1.224       1.035       0.089       377.45       0.7010       1.466       1.026       1.276       0.071       390.22       0.9720       0.8731       1.004       1.443       0.014      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 357.49      | 0.1201     | 0.0541 | 1.419      | 1.001      | 0.043                  | 368.91      | 0.6322     | 0.3165    | 1.072      | 1.157      | 0.097                  | 384.54      | 0.9204     | 0.7058 | 1.010      | 1.402      | 0.036                  |
| 358.850.19830.08871.3441.0070.064371.030.69080.36321.0511.1940.089386.870.94240.76851.0041.4230.024359.440.23090.10321.3151.0110.072372.630.73010.39931.0381.2240.082387.840.95100.79611.0021.4320.019360.200.27970.12311.2621.0270.084373.550.75140.42071.0321.2440.078388.930.96060.82951.0011.4430.016361.130.32460.14311.2241.0350.089375.450.79010.46661.0261.2760.071390.220.97200.87311.0041.4570.014362.370.38710.17041.1721.0570.095377.060.81950.50761.0231.3010.066391.060.97800.89751.0021.4620.010363.430.43120.19391.1551.0660.098378.520.84250.54411.0201.3190.060392.070.98550.92991.0011.4750.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 358.32      | 0.1628     | 0.0735 | 1.382      | 1.000      | 0.052                  | 369.93      | 0.6619     | 0.3384    | 1.059      | 1.177      | 0.093                  | 385.74      | 0.9320     | 0.7369 | 1.006      | 1.416      | 0.029                  |
| 359.440.23090.10321.3151.0110.072372.630.73010.39931.0381.2240.082387.840.95100.79611.0021.4320.019360.200.27970.12311.2621.0270.084373.550.75140.42071.0321.2440.078388.930.96060.82951.0011.4430.016361.130.32460.14311.2241.0350.089375.450.79010.46661.0261.2760.071390.220.97200.87311.0041.4570.014362.370.38710.17041.1721.0570.095377.060.81950.50761.0231.3010.066391.060.97800.89751.0021.4620.010363.430.43120.19391.1551.0660.098378.520.84250.54411.0201.3190.060392.070.98550.92991.0011.4750.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 358.85      | 0.1983     | 0.0887 | 1.344      | 1.007      | 0.064                  | 371.03      | 0.6908     | 0.3632    | 1.051      | 1.194      | 0.089                  | 386.87      | 0.9424     | 0.7685 | 1.004      | 1.423      | 0.024                  |
| 360.200.27970.12311.2621.0270.084373.550.75140.42071.0321.2440.078388.930.96060.82951.0011.4430.016361.130.32460.14311.2241.0350.089375.450.79010.46661.0261.2760.071390.220.97200.87311.0041.4570.014362.370.38710.17041.1721.0570.095377.060.81950.50761.0231.3010.066391.060.97800.89751.0021.4620.010363.430.43120.19391.1551.0660.098378.520.84250.54411.0201.3190.060392.070.98550.92991.0011.4750.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 359.44      | 0.2309     | 0.1032 | 1.315      | 1.011      | 0.072                  | 372.63      | 0.7301     | 0.3993    | 1.038      | 1.224      | 0.082                  | 387.84      | 0.9510     | 0.7961 | 1.002      | 1.432      | 0.019                  |
| 361.13       0.3246       0.1431       1.224       1.035       0.089       375.45       0.7901       0.4666       1.026       1.276       0.071       390.22       0.9720       0.8731       1.004       1.457       0.014         362.37       0.3871       0.1704       1.172       1.057       0.095       377.06       0.8195       0.5076       1.023       1.301       0.066       391.06       0.9780       0.8975       1.002       1.462       0.010         363.43       0.4312       0.1939       1.155       1.066       0.098       378.52       0.8425       0.5441       1.020       1.319       0.060       392.07       0.9855       0.9299       1.001       1.475       0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 360.20      | 0.2797     | 0.1231 | 1.262      | 1.027      | 0.084                  | 373.55      | 0.7514     | 0.4207    | 1.032      | 1.244      | 0.078                  | 388.93      | 0.9606     | 0.8295 | 1.001      | 1.443      | 0.016                  |
| 362.37         0.3871         0.1704         1.172         1.057         0.095         377.06         0.8195         0.5076         1.023         1.301         0.066         391.06         0.9780         0.8975         1.002         1.462         0.010           363.43         0.4312         0.1939         1.155         1.066         0.098         378.52         0.8425         0.5441         1.020         1.319         0.060         392.07         0.9855         0.9299         1.001         1.475         0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 361.13      | 0.3246     | 0.1431 | 1.224      | 1.035      | 0.089                  | 375.45      | 0.7901     | 0.4666    | 1.026      | 1.276      | 0.071                  | 390.22      | 0.9720     | 0.8731 | 1.004      | 1.457      | 0.014                  |
| 363.43  0.4312  0.1939  1.155  1.066  0.098  378.52  0.8425  0.5441  1.020  1.319  0.060  392.07  0.9855  0.9299  1.001  1.475  0.007  0.9855  0.9299  1.001  1.475  0.007  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9299  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.9855  0.98                                                                                                                                                                                                                                                                             | 362.37      | 0.3871     | 0.1704 | 1.172      | 1.057      | 0.095                  | 377.06      | 0.8195     | 0.5076    | 1.023      | 1.301      | 0.066                  | 391.06      | 0.9780     | 0.8975 | 1.002      | 1.462      | 0.010                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 363.43      | 0.4312     | 0.1939 | 1.155      | 1.066      | 0.098                  | 378.52      | 0.8425     | 0.5441    | 1.020      | 1.319      | 0.060                  | 392.07      | 0.9855     | 0.9299 | 1.001      | 1.475      | 0.007                  |

**Processing of the VLE Data.** Isobaric VLE values were correlated using an equation which contained the product  $z_1 z_2 \equiv z(1 - z)$  instead of  $x_1 x_2 \equiv x(1 - x)$  as was done in a previous study,<sup>3</sup> with *z* being defined as in eq 1 for a binary mixture. When correlating the values of the nondimensional Gibbs function, this equation took the form

$$\frac{G_{\rm m}^{\rm E}}{RT}(T, x_1) = z_1 z_2 \sum_{i=0}^{m} A_i z_1^{\ i}$$
(4)

with the  $A_i$  coefficients being treated as temperaturedependent by means of the relation

$$A_{i} = A_{i1}T + \frac{A_{i2}}{T} + A_{i3}$$
(5)

derived from taking thermal capacity to be a linear function of temperature,  $C_p^{\rm E} = a + bT$ . From the following fundamental thermodynamic relations,

$$C_{\rho}^{\rm E} = \left(\frac{\partial H_{\rm m}^{\rm E}}{\partial T}\right)_{p,x} \qquad -\frac{H_{\rm m}^{\rm E}}{RT} = T \left[\frac{\partial (G_{\rm m}^{\rm E}/RT)}{\partial T}\right]_{p,x} \tag{6}$$

the excess Gibbs energy function can be written as

$$\frac{G_{\rm m}^{\rm E}}{RT} = -a\ln T - \frac{b}{2}T + \frac{I_1}{T} + I_2 \tag{7}$$

where  $I_1$  and  $I_2$  are the corresponding integration constants. Furthermore, on replacement of the term  $\ln T$  in a power series of (T - h) where h > 0, truncated after the first term, eq 7 becomes



**Figure 5.** (a–d) Experimental and correlated curves using eq 11 (solid lines) for the quantities  $G_m^E$  vs  $x_1$  (**A**) and  $\gamma_i$  vs  $x_1$  (**O**) for the binary mixtures  $C_{u-1}H_{2u-1}COOC_2H_5$  (1) + CH<sub>3</sub>(CH<sub>3</sub>)C(OH)CH<sub>3</sub> (2). Dashes lines indicate curves obtained using the UNIFAC model (ref 5); (a) u = 1; (b) u = 2; (c) u = 3; (d) u = 4; the inset figures show the deviations in  $\delta H_m^E/RT$  obtained as the difference between the curve calculated by the UNIFAC model (ref 5) (dashed lines) or by correlation of the VLE values using eqs 6 and 11 (solid lines) and the corresponding direct experimental fit, eq 1.

$$\frac{G_{\rm m}^{\rm E}}{RT} = -\frac{a}{h}T - a(\ln h - 1) - \frac{b}{2}T + \frac{I_1}{T} + I_2 = -\left(\frac{a}{h} + \frac{b}{2}\right)T + \frac{I_1}{T} + I_2 - a(\ln h - 1) \quad (8)$$

which can be compared to eq 5 and which could also have been obtained by taking thermal capacity to be constant with respect to temperature over short temperature intervals.

Nevertheless, this approach yields a model with too many parameters. One way to reduce it is to hold  $C_p^E$  constant with respect to temperature. This yields an expression for the Gibbs function,

$$\frac{G_{\rm m}^{\rm E}}{RT}(T, x_1) = z_1 z_2 \sum_{i=0}^{m} \left(\frac{A_{i1}}{T} + A_{i2}\right) z_1^{\ i} \tag{9}$$

Even so, unnecessary parametrization was observed on developing eq 9 as a polynomial in *z*. To avoid this, only the even-powered terms for *z*, that is, terms for which i = 0, 2, 4, ..., were considered.

Setting m = 2, eq 9 was used here to correlate the isobaric VLE data sets, namely,  $\{T_j, x_{1j}, \ln \gamma_{1j}, \ln \gamma_{2j}\}$ ; j = 1, ..., n on one hand and  $\{x_{1i}, (H_m^E/RT_i)_i\}$ ; i = 1, ..., q on the other, where  $\ln \gamma_{1j}$  and  $\ln \gamma_{2j}$  were the natural logarithms of the activity coefficients obtained for the concentration of the first component,  $x_{1j}$ , at temperature  $T_j$ , and the nondimensional quantities  $(H_m^E/RT_i)_i$  were the

**Table 8. Parameters Obtained in the Correlation of VLE** Data Using Equation 11; in Parentheses is the Correlation Coefficient, 12

| parameters                               | 1            | 2            | 3            | 4            |
|------------------------------------------|--------------|--------------|--------------|--------------|
| A01                                      | 983.112      | 656.455      | 791.713      | 652.957      |
| $A_{02}$                                 | -2.311       | -1.637       | -1.886       | -1.470       |
| $A_{21}$                                 | 176.530      | 818.248      | 240.027      | 591.678      |
| $A_{22}$                                 | -0.687       | -2.013       | -0.626       | -1.217       |
| <i>k</i> <sub>g</sub>                    | 0.989        | 0.671        | 0.985        | 0.789        |
| $s(G_{\rm m}^{\rm E}/RT)$                | 0.007 (0.98) | 0.002 (0.97) | 0.004 (0.97) | 0.005 (0.98) |
| $S(\gamma_i)$                            | 0.037 (0.98) | 0.010 (0.99) | 0.011 (0.99) | 0.013 (0.99) |
| $s(H_{\rm m}^{\rm E}/RT)$ at             | 0.020 (0.99) | 0.012 (0.99) | 0.013 (0.99) | 0.011 (0.99) |
| 299.15 K<br>$s(H_{\rm m}^{\rm E}/RT)$ at | 0.024 (0.99) | 0.014 (0.99) | 0.012 (0.99) | 0.007 (0.99) |

<sup>a</sup> Columns: 1, ethyl methanoate (1) + *tert*-butanol (2); 2, ethyl ethanoate (1) + tert-butanol (2); 3, ethyl propanoate (1) + tertbutanol (2); and 4, ethyl butanoate (1) + tert-butanol (2).

excess enthalpies measured at a concentration of the reference component, that is, the first component,  $x_{1,i}$ , at temperature  $T_i$ , which were typically other than the equilibrium values. The subscripts *i* and *j* correspond to the measurement number in question for the activity coefficients and for the excess enthalpies, respectively.

For application of the least-squares procedure, an objective function that would reveal the discrepancies observed between the experimental values and the estimates for an equilibrium state, that is, at equal concentration, temperature, and pressure values, produced by the model was used. The objective function, OF, thus took the form

$$OF = \sum_{i=1}^{q} \left[ \frac{H_{m}^{E}}{RT} (T_{j}, x_{1j}) - \left( \frac{H_{m}^{E}}{RT_{j}} \right)_{j} \right]^{2} + \sum_{j=1}^{n} \left[ \ln \gamma_{1} (T_{j}, x_{1j}) - \ln \gamma_{1j} \right]^{2} + \sum_{j=1}^{n} \left[ \ln \gamma_{2} (T_{j}, x_{1j}) - \ln \gamma_{2j} \right]^{2}$$
(10)

and the function variables were the coefficients from eq 9 for the Gibbs function, the optimum values being the values that minimized the OF. However, the Gibbs function values, which were calculated from the natural logarithms of the activity coefficients,  $\gamma_i$ , and thus did not provide any independent statistical information, were not used directly in the OF.

The possibility that the OF might be nonconvex and thus might have different local extremes, together with the complicated handling of nonlinear systems of equations, caused us to choose a genetic algorithm for optimization of the OF.

Table 8 presents the estimated values of the model parameters together with the values for the measures of goodness of fit, s and  $r^2$ . Figure 5a-d depicts the calculated curves together with the experimental equilibrium values and the observed differences between the enthalpies obtained using eqs 9 and 6 and the experimental values at the two working temperatures employed in this study. The values of s and  $r^2$  obtained for each of the systems are indicative of good correlations and thus that this approach is appropriate for use in this and future studies.

### Conclusions

This work presents VLE values at 101.32 kPa and the excess molar quantities  $H_{\rm m}^{\rm E}$  and  $V_{\rm m}^{\rm E}$  at two working temperatures for four binary systems consisting of an ethyl ester (methanoate to butanoate) and tert-butyl alcohol. The VLE measurements were thermodynamically consistent, according to a point-to-point test. An equation and corresponding procedure intended to improve processing of VLE data for binary systems was employed, based on a new polynomial expression for the nondimensional Gibbs function related to mixture component concentration by the socalled active fraction and temperature. The most suitable final expression was

$$\frac{G_{\rm m}^{\rm E}}{RT}(T,x_1) = z_1(x_1)\left[\left(\frac{A_{01}}{T} + A_{02}\right) + \left(\frac{A_{21}}{T} + A_{22}\right)z_1^{\ 2}(x_1)\right] (11)$$

The coefficients for eq 11 were estimated based on the activity coefficient and mixing enthalpies using a method of least squares and a genetic algorithm for optimization of the objective function, eq 10. Application of the model yielded excellent results for the set of four binary mixtures composed of an ethyl ester + *tert*-butyl alcohol; hence the equation and procedure employed would appear to be suitable for use in processing VLE data in future studies. Additionally, as had been done in earlier studies on systems containing isobutanol,<sup>3,14</sup> the model put forward by Gmehling et al.<sup>5</sup> was also used to predict the VLE and enthalpies, but with the current parameters the model does not seem to be appropriate for use with a tertiary alkanol (see Figures 4 and 5a-d), even though it gives special treatment to this type of alkanol, in that it yielded large discrepancies for the Gibbs function, whose estimated values were considerably higher than the experimental values for the mixture containing ethyl methanoate but conversely lower for the other three mixtures.

### Nomenclature

- A, B, C = parameters of Antoine's equation
- $B_{ij}$  = second virial coefficients
- k = parameter of eqs 1, 4, and 9
- N = number of experimental points
- $H_{\rm m}^{\rm E} = {\rm excess~enthalpy}$
- $G_{\rm m}^{\rm E} = {\rm excess} {\rm ~Gibbs~function}$
- p = absolute pressure
- $p_i^0 =$  vapor pressure
- R = gas constant
- $r^2$  = correlation coefficient on *Y*-function,  $r^2 = \sum (Y_{cal}$  $\overline{Y}^{2/}[\Sigma(Y_{cal} - \overline{Y})^{2} + \Sigma(Y_{cal} - Y_{exp})^{2}]$ s = standard deviation on Y-function, s =  $[\Sigma(Y_{exp} - Y_{exp})^{2}]$
- $(N n)^{1/2}$
- T = temperature
- $V_{\rm m}^{\rm E} = {\rm excess \ volume}$
- $x_i =$  liquid mole fraction
- $y_i$  = vapor mole fraction
- $z_i$  = active fraction of *i* defined by eq 1
- $\gamma_i$  = activity coefficient of *i*
- $\omega$  = acentric factor

### **Literature Cited**

- (1) Gmehling, J.; Bölts, R. Azeotropic Data for Binary and Ternary Systems at Moderate Pressures. J. Chem. Eng. Data 1996, 41, 202 - 209
- Nikam, P. S.; Mahale, T. R.; Hasa, M. Density and Viscosity of Binary Mixtures of Ethyl Acetate with Methanol, Propan-1-ol, Propan-2-ol, Butan-1-ol, 2-Methylpropan-1-ol, and 2-Methylpropan-2-ol at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data **1996**, *41*, 1055–1058.
- Soto, A.; Hernández, P.; Ortega, J. Experimental VLE at 101.32 kPa in binary systems composed of ethyl methanoate and alkan-

2-ols and treatment of data using a correlation with temperature-

- (4)
- (5)
- ∠-ois and treatment of data using a correlation with temperature-dependent parameters. *Fluid Phase Equilib.* **1998**, *146*, 351–370. Gen, M.; Cheng, R. *Genetic Algorithms and Engineering Design*; John Wiley & Sons: New York, 1997. Gmehling, J.; Li, J.; Schiller, M. A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermody-namic Properties. *Ind. Chem. Eng. Res.* **1993**, *32*, 178–193. Ortega, J.; Hernández, P. Thermodynamic Study of Binary Mixtures Containing an Isobutylalkanol and Alkyl (Ethyl to Butyl) Alkanoate (Methanoate to Butanoate). Contributing with (6)Butyl) Alkanoate (Methanoate to Butanoate), Contributing with Experimental Values of Excess Molar Enthalpies and Volumes, and Isobaric Vapor–Liquid Equilibria. J. Chem. Eng. Data **1999**, 44, 757–771.
- (7) González, E.; Ortega, J. Vapor-Liquid Equilibria at 101.32 kPa in Mixtures Formed by the First Four Butyl Alkanoates and Butan-2-ol. *Fluid Phase Equilib*. 1996, 124, 161-175.
- González, E.; Ortega, J. Densities and Isobaric Vapor-Liquid (8)Equilibria for the Mixtures Formed by Four Butyl Esters and
- 1-Butanol. J. Chem. Eng. Data **1996**, 41, 53–58. Wilhoit, R. C.; Zwolinski, B. J. Physical and Thermodynamic (9)Properties of Aliphatic Alcohols. J. Phys. Chem. Ref. Data 1973, 2 117
- (10) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, 4th ed.; Techniques of Chemistry, Vol. II; Wiley-Interscience: New York, 1986.
- (11) Daubert, T. E.; Danner, R. P. Data Compilation Tables of Properties of Pure Compounds; AIChE/DIPPR: New York, 1984.
- (12) Ortega, J.; Matos, J. Estimation of the Isobaric Expansivities from Several Equations of Molar Refraction for Some Pure Organic Compounds. Mater. Chem. Phys. 1986, 15, 415-426.

- (13) Ortega, J.; Alcalde, R. Determination and Algebraic Representation of Volumes of Mixing at 298.15 K of Methyl *n*-Alkanoates (from Ethanoate to *n*-Pentadecanoate) with *n*-Pentadecane. *Fluid* Phase Equilib. 1992, 71, 49–71.
   (14) Hernández, P.; Ortega, J. Vapor–Liquid Equilibria and Densities
- (15)
- Hernández, P.; Ortega, J. Vapor-Liquid Equilibria and Densities for Ethyl Esters (Ethanoate to Butanoate) and Alkan-2-ol (C<sub>3</sub>-C<sub>4</sub>) at 101.32 kPa. J. Chem. Eng. Data **1997**, 42, 1090-1100.
  Boublik, T.; Fried, V.; Hála, E. The Vapour Pressures of Pure Substances; Elsevier: Amsterdam, 1973.
  Ortega, J.; González, C.; Peña, J.; Galván, S. Thermodynamic Study on Binary Mixtures of Propyl Ethanoate and Alkan-1-ol (C<sub>4</sub>-C<sub>4</sub>) Lepheric Vapor-Liquid Equilibria and Evones Properties (16) $(C_2-C_4)$ . Isobaric Vapor–Liquid Equilibria and Excess Properties. Fluid Phase Equilib. 2000, 170, 87–111.
- Tsonopoulos, C. An Empirical Correlation of Second Virial Coefficients. *AIChE J.* **1974**, *20*, 263–272. (17)
- Spencer, C. F.; Danner, R. P. Improved Equation for Prediction (18)of Saturated Liquid Density. J. Chem. Eng. Data 1972, 17, 236 241
- (19) Reid, R. C.; Prausnitz, J.; Poling, B. E. The Properties of Gases
- and Liquids, 4th ed.; McGraw-Hill: New York, 1988. Fredenslund, Aa.; Gmehling, J.; Rasmussen, P. Vapor–Liquid Equilibria Using UNIFAC. A Group Contribution Model, Else-(20)vier: Amsterdam, 1977.
- (21) Gmehling, J.; Menke, J.; Krafczyk, J.; Fisher, J. Azeotropic Data; VCH: Weinheim, 1994.

Received for review November 18, 2002. Accepted May 16, 2003. JE0202073